IDEAS home Printed from https://ideas.repec.org/a/spr/metron/v78y2020i2d10.1007_s40300-020-00174-6.html
   My bibliography  Save this article

On the local linear modelization of the conditional density for functional and ergodic data

Author

Listed:
  • Somia Ayad

    (Université Docteur Moulay Taher)

  • Ali Laksaci

    (King Khalid University)

  • Saâdia Rahmani

    (Université Docteur Moulay Taher)

  • Rachida Rouane

    (Université Docteur Moulay Taher)

Abstract

In this paper, we estimate the conditional density function using the local linear approach. We treat the case when the regressor is valued in a semi-metric space, the response is a scalar and the data are observed as ergodic functional times series. Under this dependence structure, we state the almost complete consistency (a.co.) with rates of the constructed estimator. Moreover, the usefulness of our results is illustrated through their application to the conditional mode estimation.

Suggested Citation

  • Somia Ayad & Ali Laksaci & Saâdia Rahmani & Rachida Rouane, 2020. "On the local linear modelization of the conditional density for functional and ergodic data," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 237-254, August.
  • Handle: RePEc:spr:metron:v:78:y:2020:i:2:d:10.1007_s40300-020-00174-6
    DOI: 10.1007/s40300-020-00174-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40300-020-00174-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40300-020-00174-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Barrientos-Marin & F. Ferraty & P. Vieu, 2010. "Locally modelled regression and functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(5), pages 617-632.
    2. Gheriballah, Abdelkader & Laksaci, Ali & Sekkal, Soumeya, 2013. "Nonparametric M-regression for functional ergodic data," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 902-908.
    3. Rachdi, Mustapha & Laksaci, Ali & Demongeot, Jacques & Abdali, Abdel & Madani, Fethi, 2014. "Theoretical and practical aspects of the quadratic error in the local linear estimation of the conditional density for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 73(C), pages 53-68.
    4. Sophie Dabo-Niang & Zoulikha Kaid & Ali Laksaci, 2015. "Asymptotic properties of the kernel estimate of spatial conditional mode when the regressor is functional," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 131-160, April.
    5. Zhiyong Zhou & Zhengyan Lin, 2016. "Asymptotic normality of locally modelled regression estimator for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 116-131, March.
    6. Sophie Dabo-Niang & Ali Laksaci, 2010. "Note on conditional mode estimation for functional dependent data," Statistica, Department of Statistics, University of Bologna, vol. 70(1), pages 83-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saâdia Rahmani & Oussama Bouanani, 2023. "Local linear estimation of the conditional cumulative distribution function: Censored functional data case," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 741-769, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oussama Bouanani & Saâdia Rahmani & Ali Laksaci & Mustapha Rachdi, 2020. "Asymptotic normality of conditional mode estimation for functional dependent data," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(2), pages 465-481, June.
    2. Fahimah A. Al-Awadhi & Zoulikha Kaid & Ali Laksaci & Idir Ouassou & Mustapha Rachdi, 2019. "Functional data analysis: local linear estimation of the $$L_1$$ L 1 -conditional quantiles," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(2), pages 217-240, June.
    3. Demongeot, Jacques & Hamie, Ali & Laksaci, Ali & Rachdi, Mustapha, 2016. "Relative-error prediction in nonparametric functional statistics: Theory and practice," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 261-268.
    4. Mustapha Rachdi & Ali Laksaci & Zoulikha Kaid & Abbassia Benchiha & Fahimah A. Al‐Awadhi, 2021. "k‐Nearest neighbors local linear regression for functional and missing data at random," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(1), pages 42-65, February.
    5. Bouabsa Wahiba, 2023. "The Estimating of the Conditional Density with Application to the Mode Function in Scalar-On-Function Regression Structure: Local Linear Approach with Missing at Random," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 27(1), pages 17-32, March.
    6. Litimein, Ouahiba & Laksaci, Ali & Ait-Hennani, Larbi & Mechab, Boubaker & Rachdi, Mustapha, 2024. "Asymptotic normality of the local linear estimator of the functional expectile regression," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    7. Zhiyong Zhou & Zhengyan Lin, 2016. "Asymptotic normality of locally modelled regression estimator for functional data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(1), pages 116-131, March.
    8. Kamal Boukhetala & Jean-François Dupuy, 2019. "Modélisation Stochastique et Statistique Book of Proceedings," Post-Print hal-02593238, HAL.
    9. Ibrahim M. Almanjahie & Zouaoui Chikr Elmezouar & Ali Laksaci & Mustapha Rachdi, 2021. "Smooth k NN Local Linear Estimation of the Conditional Distribution Function," Mathematics, MDPI, vol. 9(10), pages 1-14, May.
    10. Saâdia Rahmani & Oussama Bouanani, 2023. "Local linear estimation of the conditional cumulative distribution function: Censored functional data case," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 741-769, February.
    11. Demongeot, Jacques & Naceri, Amina & Laksaci, Ali & Rachdi, Mustapha, 2017. "Local linear regression modelization when all variables are curves," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 37-44.
    12. Belarbi, Faiza & Chemikh, Souheyla & Laksaci, Ali, 2018. "Local linear estimate of the nonparametric robust regression in functional data," Statistics & Probability Letters, Elsevier, vol. 134(C), pages 128-133.
    13. Litimein, Ouahiba & Laksaci, Ali & Mechab, Boubaker & Bouzebda, Salim, 2023. "Local linear estimate of the functional expectile regression," Statistics & Probability Letters, Elsevier, vol. 192(C).
    14. Chaouch, Mohamed, 2019. "Volatility estimation in a nonlinear heteroscedastic functional regression model with martingale difference errors," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 129-148.
    15. Xiong, Xianzhu & Ou, Meijuan & Chen, Ailian, 2021. "Reweighted Nadaraya–Watson estimation of conditional density function in the right-censored model," Statistics & Probability Letters, Elsevier, vol. 168(C).
    16. Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2012. "Lazy lasso for local regression," Computational Statistics, Springer, vol. 27(3), pages 531-550, September.
    17. Gheriballah, Abdelkader & Laksaci, Ali & Sekkal, Soumeya, 2013. "Nonparametric M-regression for functional ergodic data," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 902-908.
    18. Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
    19. Benhenni, Karim & Hassan, Ali Hajj & Su, Yingcai, 2019. "Local polynomial estimation of regression operators from functional data with correlated errors," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 80-94.
    20. Huang, Lele & Wang, Huiwen & Zheng, Andi, 2014. "The M-estimator for functional linear regression model," Statistics & Probability Letters, Elsevier, vol. 88(C), pages 165-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metron:v:78:y:2020:i:2:d:10.1007_s40300-020-00174-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.