IDEAS home Printed from https://ideas.repec.org/a/bot/rivsta/v70y2010i1p83-94.html
   My bibliography  Save this article

Note on conditional mode estimation for functional dependent data

Author

Listed:
  • Sophie Dabo-Niang
  • Ali Laksaci

Abstract

We consider mixing observations and deal with the estimation of the conditional mode of a scalar response variable given a random variable taking values in a semi-metric space. We provide a convergence rate in norm of the estimator.

Suggested Citation

  • Sophie Dabo-Niang & Ali Laksaci, 2010. "Note on conditional mode estimation for functional dependent data," Statistica, Department of Statistics, University of Bologna, vol. 70(1), pages 83-94.
  • Handle: RePEc:bot:rivsta:v:70:y:2010:i:1:p:83-94
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sophie Dabo-Niang & Zoulikha Kaid & Ali Laksaci, 2015. "Asymptotic properties of the kernel estimate of spatial conditional mode when the regressor is functional," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 131-160, April.
    2. Yen-Chi Chen, 2017. "Modal Regression using Kernel Density Estimation: a Review," Papers 1710.07004, arXiv.org, revised Dec 2017.
    3. Dabo-Niang, Sophie & Kaid, Zoulikha & Laksaci, Ali, 2012. "On spatial conditional mode estimation for a functional regressor," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1413-1421.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bot:rivsta:v:70:y:2010:i:1:p:83-94. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Giovanna Galatà). General contact details of provider: http://edirc.repec.org/data/dsbolit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.