IDEAS home Printed from
   My bibliography  Save this article

Lazy lasso for local regression


  • Diego Vidaurre


  • Concha Bielza


  • Pedro Larrañaga



Locally weighted regression is a technique that predicts the response for new data items from their neighbors in the training data set, where closer data items are assigned higher weights in the prediction. However, the original method may suffer from overfitting and fail to select the relevant variables. In this paper we propose combining a regularization approach with locally weighted regression to achieve sparse models. Specifically, the lasso is a shrinkage and selection method for linear regression. We present an algorithm that embeds lasso in an iterative procedure that alternatively computes weights and performs lasso-wise regression. The algorithm is tested on three synthetic scenarios and two real data sets. Results show that the proposed method outperforms linear and local models for several kinds of scenarios. Copyright Springer-Verlag 2012

Suggested Citation

  • Diego Vidaurre & Concha Bielza & Pedro Larrañaga, 2012. "Lazy lasso for local regression," Computational Statistics, Springer, vol. 27(3), pages 531-550, September.
  • Handle: RePEc:spr:compst:v:27:y:2012:i:3:p:531-550
    DOI: 10.1007/s00180-011-0274-0

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. David C Wheeler, 2009. "Simultaneous coefficient penalization and model selection in geographically weighted regression: the geographically weighted lasso," Environment and Planning A, Pion Ltd, London, vol. 41(3), pages 722-742, March.
    3. Scott Foster & Arūnas Verbyla & Wayne Pitchford, 2008. "A random model approach for the LASSO," Computational Statistics, Springer, vol. 23(2), pages 217-233, April.
    4. F. Ferraty & P. Hall & P. Vieu, 2010. "Most-predictive design points for functional data predictors," Biometrika, Biometrika Trust, vol. 97(4), pages 807-824.
    5. Wang, Hansheng & Xia, Yingcun, 2009. "Shrinkage Estimation of the Varying Coefficient Model," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 747-757.
    6. Khan, Jafar A. & Van Aelst, Stefan & Zamar, Ruben H., 2007. "Robust Linear Model Selection Based on Least Angle Regression," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1289-1299, December.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Vidaurre, Diego & Bielza, Concha & Larrañaga, Pedro, 2013. "Sparse regularized local regression," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 122-135.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:27:y:2012:i:3:p:531-550. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.