IDEAS home Printed from https://ideas.repec.org/b/zbw/zewexp/148927.html
   My bibliography  Save this book

Report on the dynamic efficiency of trade-related climate policy instruments

Author

Listed:
  • Baccianti, Claudio
  • Schenker, Oliver

Abstract

This report analyses how anti-carbon leakage measures, i.e. Border Carbon Adjustments (BCA), would interact with domestic and foreign firms’ R&D investment. The results of a multi- country multi-sector model with endogenous R&D investment are presented, calibrated with data of major world economies. The model also features endogenous market structure in order to embed the effect of changes in market concentration on innovation incentives. Our analysis shows that endogenous R&D investments have significant effects on carbon leakage rates and also increase the effectiveness of BCA schemes. It also shows that understanding the competition-innovation nexus is crucial for a better design of unilateral climate policies.

Suggested Citation

  • Baccianti, Claudio & Schenker, Oliver, 2015. "Report on the dynamic efficiency of trade-related climate policy instruments," ZEW Expertises, ZEW - Leibniz Centre for European Economic Research, number 148927, March.
  • Handle: RePEc:zbw:zewexp:148927
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/148927/1/875959113.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brian R. Copeland & M. Scott Taylor, 2004. "Trade, Growth, and the Environment," Journal of Economic Literature, American Economic Association, vol. 42(1), pages 7-71, March.
    2. Philippe Aghion & Nick Bloom & Richard Blundell & Rachel Griffith & Peter Howitt, 2005. "Competition and Innovation: an Inverted-U Relationship," The Quarterly Journal of Economics, Oxford University Press, vol. 120(2), pages 701-728.
    3. Joshua S. Gans, 2012. "Innovation and Climate Change Policy," American Economic Journal: Economic Policy, American Economic Association, vol. 4(4), pages 125-145, November.
    4. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    5. Marc J. Melitz, 2003. "The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity," Econometrica, Econometric Society, vol. 71(6), pages 1695-1725, November.
    6. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    7. Krugman, Paul, 1980. "Scale Economies, Product Differentiation, and the Pattern of Trade," American Economic Review, American Economic Association, vol. 70(5), pages 950-959, December.
    8. Peretto, Pietro F., 1999. "Firm size, rivalry and the extent of the market in endogenous technological change," European Economic Review, Elsevier, vol. 43(9), pages 1747-1773, October.
    9. Di Maria, C. & van der Werf, E.H., 2005. "Carbon Leakage Revisited : Unilateral Climate Policy with Directed Technical Change," Discussion Paper 2005-68, Tilburg University, Center for Economic Research.
    10. Pedro Bento, 2014. "Competition as a Discovery Procedure: Schumpeter Meets Hayek in a Model of Innovation," American Economic Journal: Macroeconomics, American Economic Association, vol. 6(3), pages 124-152, July.
    11. Balistreri, Edward J. & Rutherford, Thomas F., 2013. "Computing General Equilibrium Theories of Monopolistic Competition and Heterogeneous Firms," Handbook of Computable General Equilibrium Modeling, in: Peter B. Dixon & Dale Jorgenson (ed.), Handbook of Computable General Equilibrium Modeling, edition 1, volume 1, chapter 0, pages 1513-1570, Elsevier.
    12. Lans Bovenberg, A. & Smulders, Sjak, 1995. "Environmental quality and pollution-augmenting technological change in a two-sector endogenous growth model," Journal of Public Economics, Elsevier, vol. 57(3), pages 369-391, July.
    13. Xavier Vives, 2008. "Innovation And Competitive Pressure," Journal of Industrial Economics, Wiley Blackwell, vol. 56(3), pages 419-469, December.
    14. Fischer, Carolyn & Fox, Alan K., 2012. "Comparing policies to combat emissions leakage: Border carbon adjustments versus rebates," Journal of Environmental Economics and Management, Elsevier, vol. 64(2), pages 199-216.
    15. Smulders, Sjak & van de Klundert, Theo, 1995. "Imperfect competition, concentration and growth with firm-specific R & D," European Economic Review, Elsevier, vol. 39(1), pages 139-160, January.
    16. Corrado Maria & Edwin Werf, 2008. "Carbon leakage revisited: unilateral climate policy with directed technical change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 39(2), pages 55-74, February.
    17. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, Oxford University Press, vol. 114(3), pages 941-975.
    18. Babiker, Mustafa H., 2005. "Climate change policy, market structure, and carbon leakage," Journal of International Economics, Elsevier, vol. 65(2), pages 421-445, March.
    19. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    20. Richard Blundell & Rachel Griffith & John van Reenen, 1999. "Market Share, Market Value and Innovation in a Panel of British Manufacturing Firms," Review of Economic Studies, Oxford University Press, vol. 66(3), pages 529-554.
    21. Cohen, Wesley M & Klepper, Steven, 1996. "Firm Size and the Nature of Innovation within Industries: The Case of Process and Product R&D," The Review of Economics and Statistics, MIT Press, vol. 78(2), pages 232-243, May.
    22. James R. MARKUSEN, 2021. "International Externalities And Optimal Tax Structures," World Scientific Book Chapters, in: BROADENING TRADE THEORY Incorporating Market Realities into Traditional Models, chapter 16, pages 341-355, World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hémous, David, 2016. "The dynamic impact of unilateral environmental policies," Journal of International Economics, Elsevier, vol. 103(C), pages 80-95.
    2. van den Bijgaart, Inge, 2016. "Essays in environmental economics and policy," Other publications TiSEM 298bee2a-cb08-4173-9fe1-8, Tilburg University, School of Economics and Management.
    3. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    4. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    5. Lazkano, Itziar & Nøstbakken, Linda & Pelli, Martino, 2017. "From fossil fuels to renewables: The role of electricity storage," European Economic Review, Elsevier, vol. 99(C), pages 113-129.
    6. Lazkano, Itziar & Pham, Linh, 2016. "Do Fossil fuel Taxes Promote Innovation in Renewable Electricity Generation?," Discussion Paper Series in Economics 16/2016, Norwegian School of Economics, Department of Economics.
    7. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    8. Meunier, Guy & Ponssard, Jean-Pierre, 2014. "Capacity decisions with demand fluctuations and carbon leakage," Resource and Energy Economics, Elsevier, vol. 36(2), pages 436-454.
    9. Guy Meunier & Jean-Pierre Ponssard, 2014. "Capacity Decisions with Demand Fluctuations and Carbon Leakage," CESifo Working Paper Series 4627, CESifo.
    10. Chiara Ravetti & Tania Theoduloz & Giulia Valacchi, 2020. "Buy Coal or Kick-Start Green Innovation? Energy Policies in an Open Economy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(1), pages 95-126, September.
    11. Aghion, Philippe & Akcigit, Ufuk & Howitt, Peter, 2014. "What Do We Learn From Schumpeterian Growth Theory?," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 0, pages 515-563, Elsevier.
    12. Jerbashian Vahagn, 2016. "Knowledge licensing in a model of R&D-driven endogenous growth," The B.E. Journal of Macroeconomics, De Gruyter, vol. 16(2), pages 555-579, June.
    13. Naegele, Helene & Zaklan, Aleksandar, 2019. "Does the EU ETS cause carbon leakage in European manufacturing?," EconStor Open Access Articles, ZBW - Leibniz Information Centre for Economics, pages 125-147.
    14. van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.
    15. Alberto BUCCI, 2009. "Population, innovation, competition and growth with and without human capital investment," Departmental Working Papers 2009-46, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    16. Jerbashian, Vahagn, 2021. "Intellectual Property And Product Market Competition Regulations In A Model With Two R&D Performing Sectors," Macroeconomic Dynamics, Cambridge University Press, vol. 25(1), pages 59-80, January.
    17. Rahel Aichele, 2013. "Trade, Climate Policy and Carbon Leakage - Theory and Empirical Evidence," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 49.
    18. Branger, Frédéric & Quirion, Philippe, 2014. "Would border carbon adjustments prevent carbon leakage and heavy industry competitiveness losses? Insights from a meta-analysis of recent economic studies," Ecological Economics, Elsevier, vol. 99(C), pages 29-39.
    19. Carlo Carraro & Enrica De Cian & Massimo Tavoni, 2012. "Human Capital, Innovation, and Climate Policy: An Integrated Assessment," Working Papers 2012.18, Fondazione Eni Enrico Mattei.
    20. King, Maia & Tarbush, Bassel & Teytelboym, Alexander, 2019. "Targeted carbon tax reforms," European Economic Review, Elsevier, vol. 119(C), pages 526-547.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:zewexp:148927. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/zemande.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/zemande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.