IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v40y2020i4p723-740.html
   My bibliography  Save this article

Hand‐Hygiene Mitigation Strategies Against Global Disease Spreading through the Air Transportation Network

Author

Listed:
  • Christos Nicolaides
  • Demetris Avraam
  • Luis Cueto‐Felgueroso
  • Marta C. González
  • Ruben Juanes

Abstract

The risk for a global transmission of flu‐type viruses is strengthened by the physical contact between humans and accelerated through individual mobility patterns. The Air Transportation System plays a critical role in such transmissions because it is responsible for fast and long‐range human travel, while its building components—the airports—are crowded, confined areas with usually poor hygiene. Centers for Disease Control and Prevention (CDC) and World Health Organization (WHO) consider hand hygiene as the most efficient and cost‐effective way to limit disease propagation. Results from clinical studies reveal the effect of hand washing on individual transmissibility of infectious diseases. However, its potential as a mitigation strategy against the global risk for a pandemic has not been fully explored. Here, we use epidemiological modeling and data‐driven simulations to elucidate the role of individual engagement with hand hygiene inside airports in conjunction with human travel on the global spread of epidemics. We find that, by increasing travelers engagement with hand hygiene at all airports, a potential pandemic can be inhibited by 24% to 69%. In addition, we identify 10 airports at the core of a cost‐optimal deployment of the hand‐washing mitigation strategy. Increasing hand‐washing rate at only those 10 influential locations, the risk of a pandemic could potentially drop by up to 37%. Our results provide evidence for the effectiveness of hand hygiene in airports on the global spread of infections that could shape the way public‐health policy is implemented with respect to the overall objective of mitigating potential population health crises.

Suggested Citation

  • Christos Nicolaides & Demetris Avraam & Luis Cueto‐Felgueroso & Marta C. González & Ruben Juanes, 2020. "Hand‐Hygiene Mitigation Strategies Against Global Disease Spreading through the Air Transportation Network," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 723-740, April.
  • Handle: RePEc:wly:riskan:v:40:y:2020:i:4:p:723-740
    DOI: 10.1111/risa.13438
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.13438
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.13438?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christos Nicolaides & Luis Cueto-Felgueroso & Marta C González & Ruben Juanes, 2012. "A Metric of Influential Spreading during Contagion Dynamics through the Air Transportation Network," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    2. Chung, Lap Hang, 2015. "Impact of pandemic control over airport economics: Reconciling public health with airport business through a streamlined approach in pandemic control," Journal of Air Transport Management, Elsevier, vol. 44, pages 42-53.
    3. Sinan Aral & Christos Nicolaides, 2017. "Exercise contagion in a global social network," Nature Communications, Nature, vol. 8(1), pages 1-8, April.
    4. Mitesh S. Patel, 2018. "Nudges for influenza vaccination," Nature Human Behaviour, Nature, vol. 2(10), pages 720-721, October.
    5. Smith, Richard D., 2006. "Responding to global infectious disease outbreaks: Lessons from SARS on the role of risk perception, communication and management," Social Science & Medicine, Elsevier, vol. 63(12), pages 3113-3123, December.
    6. Rachael M. Jones & Elodie Adida, 2011. "Influenza Infection Risk and Predominate Exposure Route: Uncertainty Analysis," Risk Analysis, John Wiley & Sons, vol. 31(10), pages 1622-1631, October.
    7. Xiao‐Bing Hu & Hang Li & XiaoMei Guo & Pieter H. A. J. M. van Gelder & Peijun Shi, 2019. "Spatial Vulnerability of Network Systems under Spatially Local Hazards," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 162-179, January.
    8. Mark Nicas & Rachael M. Jones, 2009. "Relative Contributions of Four Exposure Pathways to Influenza Infection Risk," Risk Analysis, John Wiley & Sons, vol. 29(9), pages 1292-1303, September.
    9. Fan, Victoria Y & Jamison, Dean T & Summers, Lawrence H, 2018. "Pandemic risk: how large are the expected losses?," Scholarly Articles 35014363, Harvard Kennedy School of Government.
    10. David Yokum & Julie C. Lauffenburger & Roya Ghazinouri & Niteesh K. Choudhry, 2018. "Letters designed with behavioural science increase influenza vaccination in Medicare beneficiaries," Nature Human Behaviour, Nature, vol. 2(10), pages 743-749, October.
    11. Lim, Jaegeum & Meer, Jonathan, 2018. "How do peers influence BMI? Evidence from randomly assigned classrooms in South Korea," Social Science & Medicine, Elsevier, vol. 197(C), pages 17-23.
    12. Cynthia Barnhart & Douglas Fearing & Vikrant Vaze, 2014. "Modeling Passenger Travel and Delays in the National Air Transportation System," Operations Research, INFORMS, vol. 62(3), pages 580-601, June.
    13. Neil M. Ferguson & Derek A. T. Cummings & Christophe Fraser & James C. Cajka & Philip C. Cooley & Donald S. Burke, 2006. "Strategies for mitigating an influenza pandemic," Nature, Nature, vol. 442(7101), pages 448-452, July.
    14. Rachael M. Jones & Yoshifumi Masago & Timothy Bartrand & Charles N. Haas & Mark Nicas & Joan B. Rose, 2009. "Characterizing the Risk of Infection from Mycobacterium tuberculosis in Commercial Passenger Aircraft Using Quantitative Microbial Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 29(3), pages 355-365, March.
    15. Aiello, A.E. & Coulborn, R.M. & Perez, V. & Larson, E.L., 2008. "Effect of hand hygiene on infectious disease risk in the community setting: A meta-analysis," American Journal of Public Health, American Public Health Association, vol. 98(8), pages 1372-1381.
    16. Nicole C. J. Brienen & Aura Timen & Jacco Wallinga & Jim E. Van Steenbergen & Peter F. M. Teunis, 2010. "The Effect of Mask Use on the Spread of Influenza During a Pandemic," Risk Analysis, John Wiley & Sons, vol. 30(8), pages 1210-1218, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. M. Didar-Ul Islam & Prantor Kumar Mondal & Nathanael Ojong & Md. Bodrud-Doza & Md. Abu Bakar Siddique & Moazzem Hossain & Mohammed A. Mamun, 2021. "Water, sanitation, hygiene and waste disposal practices as COVID-19 response strategy: insights from Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11953-11974, August.
    2. Mattia Mazzoli & Riccardo Gallotti & Filippo Privitera & Pere Colet & José J. Ramasco, 2023. "Spatial immunization to abate disease spreading in transportation hubs," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Samanci, Simge & Didem Atalay, Kumru & Bahar Isin, Feride, 2021. "Focusing on the big picture while observing the concerns of both managers and passengers in the post-covid era," Journal of Air Transport Management, Elsevier, vol. 90(C).
    4. Yusheng Zhang & Liang Li & Yuewen Jiang & Biqing Huang, 2020. "Analysis of COVID-19 Prevention and Control Effects Based on the SEITRD Dynamic Model and Wuhan Epidemic Statistics," IJERPH, MDPI, vol. 17(24), pages 1-16, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rachael M. Jones & Elodie Adida, 2013. "Selecting Nonpharmaceutical Interventions for Influenza," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1473-1488, August.
    2. Siming You & Man Pun Wan, 2015. "A Risk Assessment Scheme of Infection Transmission Indoors Incorporating the Impact of Resuspension," Risk Analysis, John Wiley & Sons, vol. 35(8), pages 1488-1502, August.
    3. Edward M. Fisher & John D. Noti & William G. Lindsley & Francoise M. Blachere & Ronald E. Shaffer, 2014. "Validation and Application of Models to Predict Facemask Influenza Contamination in Healthcare Settings," Risk Analysis, John Wiley & Sons, vol. 34(8), pages 1423-1434, August.
    4. Ana Balsa & Carlos Díaz, 2018. "Social interactions in health behaviors and conditions," Documentos de Trabajo/Working Papers 1802, Facultad de Ciencias Empresariales y Economia. Universidad de Montevideo..
    5. Keogh-Brown, Marcus Richard & Smith, Richard David, 2008. "The economic impact of SARS: How does the reality match the predictions?," Health Policy, Elsevier, vol. 88(1), pages 110-120, October.
    6. Nicole C. J. Brienen & Aura Timen & Jacco Wallinga & Jim E. Van Steenbergen & Peter F. M. Teunis, 2010. "The Effect of Mask Use on the Spread of Influenza During a Pandemic," Risk Analysis, John Wiley & Sons, vol. 30(8), pages 1210-1218, August.
    7. Rehse, Dominik & Tremöhlen, Felix, 2020. "Fostering participation in digital public health interventions: The case of digital contact tracing," ZEW Discussion Papers 20-076, ZEW - Leibniz Centre for European Economic Research.
    8. Dube, Kaitano & Nhamo, Godwell & Chikodzi, David, 2021. "COVID-19 pandemic and prospects for recovery of the global aviation industry," Journal of Air Transport Management, Elsevier, vol. 92(C).
    9. Christos Ellinas & Christos Nicolaides & Naoki Masuda, 2022. "Mitigation strategies against cascading failures within a project activity network," Journal of Computational Social Science, Springer, vol. 5(1), pages 383-400, May.
    10. Rachael M. Jones & Yulin Xia, 2018. "Annual Burden of Occupationally‐Acquired Influenza Infections in Hospitals and Emergency Departments in the United States," Risk Analysis, John Wiley & Sons, vol. 38(3), pages 442-453, March.
    11. Jamie Bedson & Laura A. Skrip & Danielle Pedi & Sharon Abramowitz & Simone Carter & Mohamed F. Jalloh & Sebastian Funk & Nina Gobat & Tamara Giles-Vernick & Gerardo Chowell & João Rangel Almeida & Ran, 2021. "A review and agenda for integrated disease models including social and behavioural factors," Nature Human Behaviour, Nature, vol. 5(7), pages 834-846, July.
    12. Jeremy Hadidjojo & Siew Ann Cheong, 2011. "Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-10, July.
    13. Goodell, John W. & Goutte, Stephane, 2021. "Co-movement of COVID-19 and Bitcoin: Evidence from wavelet coherence analysis," Finance Research Letters, Elsevier, vol. 38(C).
    14. Clarke, Lorcan, 2020. "An introduction to economic studies, health emergencies, and COVID-19," LSE Research Online Documents on Economics 105051, London School of Economics and Political Science, LSE Library.
    15. Catalina Amuedo-Dorantes & Neeraj Kaushal & Ashley N. Muchow, 2021. "Timing of social distancing policies and COVID-19 mortality: county-level evidence from the U.S," Journal of Population Economics, Springer;European Society for Population Economics, vol. 34(4), pages 1445-1472, October.
    16. Nan Zhang & Yuguo Li, 2018. "Transmission of Influenza A in a Student Office Based on Realistic Person-to-Person Contact and Surface Touch Behaviour," IJERPH, MDPI, vol. 15(8), pages 1-20, August.
    17. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    18. Domhnall Melly & Emmet McLoughlin & Kelly Maguire, 2023. "Emerging Venue Considerations for Event Management: The Case of Ireland," Tourism and Hospitality, MDPI, vol. 4(1), pages 1-15, March.
    19. Susan M. Rogers & James Rineer & Matthew D. Scruggs & William D. Wheaton & Phillip C. Cooley & Douglas J. Roberts & Diane K. Wagener, 2014. "A Geospatial Dynamic Microsimulation Model for Household Population Projections," International Journal of Microsimulation, International Microsimulation Association, vol. 7(2), pages 119-146.
    20. Jennifer Trudeau & Anna-Maria Aksan & William F. Vásquez, 2018. "Water system unreliability and diarrhea incidence among children in Guatemala," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 63(2), pages 241-250, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:40:y:2020:i:4:p:723-740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.