IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v37y2017i1p173-192.html
   My bibliography  Save this article

The Effect of Forest Management Strategy on Carbon Storage and Revenue in Western Washington: A Probabilistic Simulation of Tradeoffs

Author

Listed:
  • Paul W. Fischer
  • Alison C. Cullen
  • Gregory J. Ettl

Abstract

The objectives of this study are to understand tradeoffs between forest carbon and timber values, and evaluate the impact of uncertainty in improved forest management (IFM) carbon offset projects to improve forest management decisions. The study uses probabilistic simulation of uncertainty in financial risk for three management scenarios (clearcutting in 45‐ and 65‐year rotations and no harvest) under three carbon price schemes (historic voluntary market prices, cap and trade, and carbon prices set to equal net present value (NPV) from timber‐oriented management). Uncertainty is modeled for value and amount of carbon credits and wood products, the accuracy of forest growth model forecasts, and four other variables relevant to American Carbon Registry methodology. Calculations use forest inventory data from a 1,740 ha forest in western Washington State, using the Forest Vegetation Simulator (FVS) growth model. Sensitivity analysis shows that FVS model uncertainty contributes more than 70% to overall NPV variance, followed in importance by variability in inventory sample (3–14%), and short‐term prices for timber products (8%), while variability in carbon credit price has little influence (1.1%). At regional average land‐holding costs, a no‐harvest management scenario would become revenue‐positive at a carbon credit break‐point price of $14.17/Mg carbon dioxide equivalent (CO2e). IFM carbon projects are associated with a greater chance of both large payouts and large losses to landowners. These results inform policymakers and forest owners of the carbon credit price necessary for IFM approaches to equal or better the business‐as‐usual strategy, while highlighting the magnitude of financial risk and reward through probabilistic simulation.

Suggested Citation

  • Paul W. Fischer & Alison C. Cullen & Gregory J. Ettl, 2017. "The Effect of Forest Management Strategy on Carbon Storage and Revenue in Western Washington: A Probabilistic Simulation of Tradeoffs," Risk Analysis, John Wiley & Sons, vol. 37(1), pages 173-192, January.
  • Handle: RePEc:wly:riskan:v:37:y:2017:i:1:p:173-192
    DOI: 10.1111/risa.12611
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12611
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12611?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marc N. Conte & Matthew J. Kotchen, 2010. "Explaining The Price Of Voluntary Carbon Offsets," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 1(02), pages 93-111.
    2. Parajuli, Rajan & Chang, Sun Joseph, 2012. "Carbon sequestration and uneven-aged management of loblolly pine stands in the Southern USA: A joint optimization approach," Forest Policy and Economics, Elsevier, vol. 22(C), pages 65-71.
    3. Larocque, Guy R. & Bhatti, Jagtar S. & Boutin, Robert & Chertov, Oleg, 2008. "Uncertainty analysis in carbon cycle models of forest ecosystems: Research needs and development of a theoretical framework to estimate error propagation," Ecological Modelling, Elsevier, vol. 219(3), pages 400-412.
    4. Adams, Thomas & Turner, James A., 2012. "An investigation into the effects of an emissions trading scheme on forest management and land use in New Zealand," Forest Policy and Economics, Elsevier, vol. 15(C), pages 78-90.
    5. Huang, Ching-Hsun & Kronrad, Gary D., 2001. "The cost of sequestering carbon on private forest lands," Forest Policy and Economics, Elsevier, vol. 2(2), pages 133-142, June.
    6. Rabotyagov, Sergey S. & Lin, Sonja, 2013. "Small forest landowner preferences for working forest conservation contract attributes: A case of Washington State, USA," Journal of Forest Economics, Elsevier, vol. 19(3), pages 307-330.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leonie Netter & Eike Luedeling & Cory Whitney, 2022. "Agroforestry and reforestation with the Gold Standard-Decision Analysis of a voluntary carbon offset label," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(2), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Carattini & Andrea Baranzini & Philippe Thalmann & Frédéric Varone & Frank Vöhringer, 2017. "Green Taxes in a Post-Paris World: Are Millions of Nays Inevitable?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(1), pages 97-128, September.
    2. Nguyen, Trung Thanh & Nghiem, Nhung, 2016. "Optimal forest rotation for carbon sequestration and biodiversity conservation by farm income levels," Forest Policy and Economics, Elsevier, vol. 73(C), pages 185-194.
    3. Nijnik, Maria & Pajot, Guillaume & Moffat, Andy J. & Slee, Bill, 2013. "An economic analysis of the establishment of forest plantations in the United Kingdom to mitigate climatic change," Forest Policy and Economics, Elsevier, vol. 26(C), pages 34-42.
    4. Khanal, Puskar N. & Grebner, Donald L. & Munn, Ian A. & Grado, Stephen C. & Grala, Robert K. & Henderson, James E., 2017. "Evaluating non-industrial private forest landowner willingness to manage for forest carbon sequestration in the southern United States," Forest Policy and Economics, Elsevier, vol. 75(C), pages 112-119.
    5. Richard Yao & David Palmer & Barbara Hock & Duncan Harrison & Tim Payn & Juan Monge, 2019. "Forest Investment Framework as a Support Tool for the Sustainable Management of Planted Forests," Sustainability, MDPI, vol. 11(12), pages 1-22, June.
    6. Zack Dorner & Dean Hyslop, 2014. "Modelling Changing Rural Land Use in New Zealand 1997 to 2008 Using a Multinomial Logit Approach," Working Papers 14_12, Motu Economic and Public Policy Research.
    7. van Kooten, G. Cornelis & Sohngen, Brent, 2007. "Economics of Forest Ecosystem Carbon Sinks: A Review," International Review of Environmental and Resource Economics, now publishers, vol. 1(3), pages 237-269, September.
    8. Newman, D.H., 2002. "Forestry's golden rule and the development of the optimal forest rotation literature," Journal of Forest Economics, Elsevier, vol. 8(1), pages 5-27.
    9. Kesternich, Martin & Löschel, Andreas & Römer, Daniel, 2016. "The long-term impact of matching and rebate subsidies when public goods are impure: Field experimental evidence from the carbon offsetting market," Journal of Public Economics, Elsevier, vol. 137(C), pages 70-78.
    10. Solomon Hsiang & Paulina Oliva & Reed Walker, 2019. "The Distribution of Environmental Damages," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 13(1), pages 83-103.
    11. Andrew Stainback, G. & Alavalapati, Janaki R. R., 2004. "Restoring longleaf pine through silvopasture practices: an economic analysis," Forest Policy and Economics, Elsevier, vol. 6(3-4), pages 371-378, June.
    12. Arnab Mitra & Michael R. Moore, 2018. "Green Electricity Markets as Mechanisms of Public-Goods Provision: Theory and Experimental Evidence," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 45-71, September.
    13. Kerchner, Charles D. & Keeton, William S., 2015. "California's regulatory forest carbon market: Viability for northeast landowners," Forest Policy and Economics, Elsevier, vol. 50(C), pages 70-81.
    14. Conte, Marc N. & Jacobsen, Grant D., 2016. "Explaining Demand for Green Electricity Using Data from All U.S. Utilities," Energy Economics, Elsevier, vol. 60(C), pages 122-130.
    15. Stefano Carattini & Alessandro Tavoni, 2016. "How green are economists?," GRI Working Papers 247, Grantham Research Institute on Climate Change and the Environment.
    16. Julia Blasch & Mehdi Farsi, 2012. "Retail demand for voluntary carbon offsets - A choice experiment among Swiss consumers," IED Working paper 12-18, IED Institute for Environmental Decisions, ETH Zurich.
    17. Vedel, Suzanne Elizabeth & Jacobsen, Jette Bredahl & Thorsen, Bo Jellesmark, 2015. "Forest owners' willingness to accept contracts for ecosystem service provision is sensitive to additionality," Ecological Economics, Elsevier, vol. 113(C), pages 15-24.
    18. Kesternich, Martin & Römer, Daniel & Flues, Florens, 2019. "The power of active choice: Field experimental evidence on repeated contribution decisions to a carbon offsetting program," European Economic Review, Elsevier, vol. 114(C), pages 76-91.
    19. Turley, Marianne C. & Ford, E. David, 2009. "Definition and calculation of uncertainty in ecological process models," Ecological Modelling, Elsevier, vol. 220(17), pages 1968-1983.
    20. Coleman, Andrew, 2018. "Forest-based carbon sequestration, and the role of forward, futures, and carbon-lending markets: A comparative institutions approach," Journal of Forest Economics, Elsevier, vol. 33(C), pages 95-104.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:37:y:2017:i:1:p:173-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.