IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v35y2015i3p484-500.html
   My bibliography  Save this article

The Multiscale Importance of Road Segments in a Network Disruption Scenario: A Risk‐Based Approach

Author

Listed:
  • Susana Freiria
  • Alexandre O. Tavares
  • Rui Pedro Julião

Abstract

This article addresses the problem of the multiscale importance of road networks, with the aim of helping to establish a more resilient network in the event of a road disruption scenario. A new model for identifying the most important roads is described and applied on a local and regional scale. The work presented here represents a step forward, since it focuses on the interaction between identifying the most important roads in a network that connect people and health services, the specificity of the natural hazards that threaten the normal functioning of the network, and an assessment of the consequences of three real‐world interruptions from a multiscale perspective. The case studies concern three different past events: road interruptions due to a flood, a forest fire, and a mass movement. On the basis of the results obtained, it is possible to establish the roads for which risk management should be a priority. The multiscale perspective shows that in a road interruption the regional system may have the capacity to reorganize itself, although the interruption may have consequences for local dynamics. Coordination between local and regional scales is therefore important. The model proposed here allows for the scaling of emergency response facilities and human and physical resources. It represents an innovative approach to defining priorities, not only in the prevention phase but also in terms of the response to natural disasters, such as awareness of the consequences of road disruption for the rescue services sent out to local communities.

Suggested Citation

  • Susana Freiria & Alexandre O. Tavares & Rui Pedro Julião, 2015. "The Multiscale Importance of Road Segments in a Network Disruption Scenario: A Risk‐Based Approach," Risk Analysis, John Wiley & Sons, vol. 35(3), pages 484-500, March.
  • Handle: RePEc:wly:riskan:v:35:y:2015:i:3:p:484-500
    DOI: 10.1111/risa.12280
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12280
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12280?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Chen, Bi Yu & Lam, William H.K. & Sumalee, Agachai & Li, Qingquan & Li, Zhi-Chun, 2012. "Vulnerability analysis for large-scale and congested road networks with demand uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 501-516.
    2. Jenelius, Erik & Petersen, Tom & Mattsson, Lars-Göran, 2006. "Importance and exposure in road network vulnerability analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 537-560, August.
    3. James H. Lambert & Thomas Turley, 2005. "Priority Setting for the Distribution of Localized Hazard Protection," Risk Analysis, John Wiley & Sons, vol. 25(3), pages 745-752, June.
    4. George E. Apostolakis & Douglas M. Lemon, 2005. "A Screening Methodology for the Identification and Ranking of Infrastructure Vulnerabilities Due to Terrorism," Risk Analysis, John Wiley & Sons, vol. 25(2), pages 361-376, April.
    5. Matthew J. Schroeder & James H. Lambert, 2011. "Scenario-based multiple criteria analysis for infrastructure policy impacts and planning," Journal of Risk Research, Taylor & Francis Journals, vol. 14(2), pages 191-214, February.
    6. Reggiani, Aura, 2013. "Network resilience for transport security: Some methodological considerations," Transport Policy, Elsevier, vol. 28(C), pages 63-68.
    7. Rolf Nyberg & Magnus Johansson, 2013. "Indicators of road network vulnerability to storm-felled trees," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 69(1), pages 185-199, October.
    8. Yacov Y. Haimes & Stan Kaplan & James H. Lambert, 2002. "Risk Filtering, Ranking, and Management Framework Using Hierarchical Holographic Modeling," Risk Analysis, John Wiley & Sons, vol. 22(2), pages 383-397, April.
    9. Jun Long & Baruch Fischhoff, 2000. "Setting Risk Priorities: A Formal Model," Risk Analysis, John Wiley & Sons, vol. 20(3), pages 339-352, June.
    10. Bilal M. Ayyub & William L. McGill & Mark Kaminskiy, 2007. "Critical Asset and Portfolio Risk Analysis: An All‐Hazards Framework," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 789-801, August.
    11. Bruno F. Santos & António P. Antunes & Eric J. Miller, 2010. "Interurban road network planning model with accessibility and robustness objectives," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(3), pages 297-313, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaoming Zhou & Jiuh‐Biing Sheu & Junwei Wang, 2017. "Robustness Assessment of Urban Road Network with Consideration of Multiple Hazard Events," Risk Analysis, John Wiley & Sons, vol. 37(8), pages 1477-1494, August.
    2. Xiaoge Zhang & Sankaran Mahadevan & Kai Goebel, 2019. "Network Reconfiguration for Increasing Transportation System Resilience Under Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2054-2075, September.
    3. Freiria, Susana & Ribeiro, Bernardete & Tavares, Alexandre O., 2015. "Understanding road network dynamics: Link-based topological patterns," Journal of Transport Geography, Elsevier, vol. 46(C), pages 55-66.
    4. Alexandre Oliveira Tavares & José Leandro Barros & Angela Santos, 2017. "Multidimensional Approach for Tsunami Vulnerability Assessment: Framing the Territorial Impacts in Two Municipalities in Portugal," Risk Analysis, John Wiley & Sons, vol. 37(4), pages 788-811, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodríguez-Núñez, Eduardo & García-Palomares, Juan Carlos, 2014. "Measuring the vulnerability of public transport networks," Journal of Transport Geography, Elsevier, vol. 35(C), pages 50-63.
    2. Hsieh, Cheng-Hsien & Feng, Cheng-Min, 2020. "The highway resilience and vulnerability in Taiwan," Transport Policy, Elsevier, vol. 87(C), pages 1-9.
    3. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).
    4. Bier, Vicki & Gutfraind, Alexander, 2019. "Risk analysis beyond vulnerability and resilience – characterizing the defensibility of critical systems," European Journal of Operational Research, Elsevier, vol. 276(2), pages 626-636.
    5. Zhang, Nan & Huang, Hong & Su, Boni & Zhao, Jinlong, 2015. "Analysis of dynamic road risk for pedestrian evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 171-183.
    6. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.
    7. Kurmankhojayev, Daniyar & Li, Guoyuan & Chen, Anthony, 2024. "Link criticality index: Refinement, framework extension, and a case study," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Mylonas, Chrysostomos & Mitsakis, Evangelos & Kepaptsoglou, Konstantinos, 2023. "Criticality analysis in road networks with graph-theoretic measures, traffic assignment, and simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    9. Rogerson, Ellen C. & Lambert, James H., 2012. "Prioritizing risks via several expert perspectives with application to runway safety," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 22-34.
    10. Jason R. W. Merrick & Laura A. McLay, 2010. "Is Screening Cargo Containers for Smuggled Nuclear Threats Worthwhile?," Decision Analysis, INFORMS, vol. 7(2), pages 155-171, June.
    11. Aghababaei, Mohammad T. (Siavash) & Costello, Seosamh B. & Ranjitkar, Prakash, 2021. "Measures to evaluate post-disaster trip resilience on road networks," Journal of Transport Geography, Elsevier, vol. 95(C).
    12. Bell, Michael G.H. & Kurauchi, Fumitaka & Perera, Supun & Wong, Walter, 2017. "Investigating transport network vulnerability by capacity weighted spectral analysis," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 251-266.
    13. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    14. Ling Zhang & Jingjing Hao & Xiaofeng Ji & Lan Liu, 2019. "Research on the Complex Characteristics of Freight Transportation from a Multiscale Perspective Using Freight Vehicle Trip Data," Sustainability, MDPI, vol. 11(7), pages 1-20, March.
    15. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    16. Shital A. Thekdi & James H. Lambert, 2012. "Decision Analysis and Risk Models for Land Development Affecting Infrastructure Systems," Risk Analysis, John Wiley & Sons, vol. 32(7), pages 1253-1269, July.
    17. El-Rashidy, Rawia Ahmed & Grant-Muller, Susan M., 2014. "An assessment method for highway network vulnerability," Journal of Transport Geography, Elsevier, vol. 34(C), pages 34-43.
    18. H Jönsson & J Johansson & H Johansson, 2008. "Identifying critical components in technical infrastructure networks," Journal of Risk and Reliability, , vol. 222(2), pages 235-243, June.
    19. Victor Cantillo & Luis F. Macea & Miguel Jaller, 2019. "Assessing Vulnerability of Transportation Networks for Disaster Response Operations," Networks and Spatial Economics, Springer, vol. 19(1), pages 243-273, March.
    20. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:35:y:2015:i:3:p:484-500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.