IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v42y1995i7p1021-1039.html
   My bibliography  Save this article

Optimal cutoff strategies in capacity expansion problems

Author

Listed:
  • Michael Monticino
  • James Weisinger

Abstract

Capacity expansion refers to the process of adding facilities or manpower to meet increasing demand. Typical capacity expansion decisions are characterized by uncertain demand forecasts and uncertainty in the eventual cost of expansion projects. This article models capacity expansion within the framework of piecewise deterministic Markov processes and investigates the problem of controlling investment in a succession of same type projects in order to meet increasing demand with minimum cost. In particular, we investigate the optimality of a class of investment strategies called cutoff strategies. These strategies have the property that there exists some undercapacity level M such that the strategy invests at the maximum available rate at all levels above M and does not invest at any level below M. Cutoff strategies are appealing because they are straightforward to implement. We determine conditions on the undercapacity penalty function that ensure the existence of optimal cutoff strategies when the cost of completing a project is exponentially distributed. A by‐product of the proof is an algorithm for determining the optimal strategy and its cost. © 1995 John Wiley & Sons, Inc.

Suggested Citation

  • Michael Monticino & James Weisinger, 1995. "Optimal cutoff strategies in capacity expansion problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(7), pages 1021-1039, October.
  • Handle: RePEc:wly:navres:v:42:y:1995:i:7:p:1021-1039
    DOI: 10.1002/1520-6750(199510)42:73.0.CO;2-N
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(199510)42:73.0.CO;2-N
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(199510)42:73.0.CO;2-N?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P. Massé & R. Gibrat, 1957. "Application of Linear Programming to Investments in the Electric Power Industry," Management Science, INFORMS, vol. 3(2), pages 149-166, January.
    2. James C. Bean & Julia L. Higle & Robert L. Smith, 1992. "Capacity Expansion Under Stochastic Demands," Operations Research, INFORMS, vol. 40(3-supplem), pages 210-216, June.
    3. Charles R. Scherer & Leland Joe, 1977. "Electric Power System Planning with Explicit Stochastic Reserves Constraint," Management Science, INFORMS, vol. 23(9), pages 978-985, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salles, J. L. F. & do Val, J. B. R., 2001. "An impulse control problem of a production model with interruptions to follow stochastic demand," European Journal of Operational Research, Elsevier, vol. 132(1), pages 123-145, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Earl-Juei & Jaraiedi, Majid & Torries, Thomas F., 1996. "Modelling long-run cost minimization and environmental provisions for utility expansion," Energy Economics, Elsevier, vol. 18(1-2), pages 49-68, April.
    2. Matar, Walid & Murphy, Frederic & Pierru, Axel & Rioux, Bertrand, 2015. "Lowering Saudi Arabia's fuel consumption and energy system costs without increasing end consumer prices," Energy Economics, Elsevier, vol. 49(C), pages 558-569.
    3. Qin, Ruwen & Nembhard, David A., 2012. "Demand modeling of stochastic product diffusion over the life cycle," International Journal of Production Economics, Elsevier, vol. 137(2), pages 201-210.
    4. De Jonghe, C. & Hobbs, B. F. & Belmans, R., 2011. "Integrating short-term demand response into long-term investment planning," Cambridge Working Papers in Economics 1132, Faculty of Economics, University of Cambridge.
    5. James H. Merrick & John E. T. Bistline & Geoffrey J. Blanford, 2021. "On representation of energy storage in electricity planning models," Papers 2105.03707, arXiv.org, revised May 2021.
    6. Pineau, Pierre-Olivier & Rasata, Hasina & Zaccour, Georges, 2011. "Impact of some parameters on investments in oligopolistic electricity markets," European Journal of Operational Research, Elsevier, vol. 213(1), pages 180-195, August.
    7. Frederic Murphy & Axel Pierru & Yves Smeers, 2016. "A Tutorial on Building Policy Models as Mixed-Complementarity Problems," Interfaces, INFORMS, vol. 46(6), pages 465-481, December.
    8. Koopmans, Tjalling C, 1977. "Concepts of Optimality and Their Uses," American Economic Review, American Economic Association, vol. 67(3), pages 261-274, June.
    9. Truchon, Michel, 1988. "Programmation mathématique et théorie économique," L'Actualité Economique, Société Canadienne de Science Economique, vol. 64(2), pages 143-156, juin.
    10. Jacques H. Dreze, 1995. "Forty Years of Public Economics: A Personal Perspective," Journal of Economic Perspectives, American Economic Association, vol. 9(2), pages 111-130, Spring.
    11. Kai Huang & Shabbir Ahmed, 2009. "The Value of Multistage Stochastic Programming in Capacity Planning Under Uncertainty," Operations Research, INFORMS, vol. 57(4), pages 893-904, August.
    12. Gitizadeh, Mohsen & Kaji, Mahdi & Aghaei, Jamshid, 2013. "Risk based multiobjective generation expansion planning considering renewable energy sources," Energy, Elsevier, vol. 50(C), pages 74-82.
    13. Zhouchun Huang & Qipeng P. Zheng & Andrew L. Liu, 2022. "A Nested Cross Decomposition Algorithm for Power System Capacity Expansion with Multiscale Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 1919-1939, July.
    14. Yang, Qing & Zhang, Lei & Zou, Shaohui & Zhang, Jinsuo, 2020. "Intertemporal optimization of the coal production capacity in China in terms of uncertain demand, economy, environment, and energy security," Energy Policy, Elsevier, vol. 139(C).
    15. Frederic H. Murphy & Zhong Xian Wang, 1993. "A network reformulation of an electric utility expansion planning model," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(4), pages 451-457, June.
    16. Sarah M. Ryan, 2003. "Capacity expansion with lead times and autocorrelated random demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(2), pages 167-183, March.
    17. Michael C. Ferris & Andy Philpott, 2023. "Renewable electricity capacity planning with uncertainty at multiple scales," Computational Management Science, Springer, vol. 20(1), pages 1-40, December.
    18. Ozgur Turetken, 2008. "Is your back-up IT infrastructure in a safe location?," Information Systems Frontiers, Springer, vol. 10(3), pages 375-383, July.
    19. Subrata Mitra & Balram Avittathur, 2018. "Application of linear programming in optimizing the procurement and movement of coal for an Indian coal-fired power-generating company," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 45(3), pages 207-224, September.
    20. Gaete-Morales, Carlos & Gallego-Schmid, Alejandro & Stamford, Laurence & Azapagic, Adisa, 2019. "A novel framework for development and optimisation of future electricity scenarios with high penetration of renewables and storage," Applied Energy, Elsevier, vol. 250(C), pages 1657-1672.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:42:y:1995:i:7:p:1021-1039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.