IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v45y2025i3p161-175.html
   My bibliography  Save this article

ChatGPT and Commodity Return

Author

Listed:
  • Shen Gao
  • Shijie Wang
  • Yuanzhi Wang
  • Qunzi Zhang

Abstract

This paper investigates the ability of a ChatGPT‐based indicator to forecast excess returns of the commodity futures index. Using ChatGPT to extract information from over 2.5 million articles from nine international newspapers, we demonstrate that our constructed commodity news ratio index significantly predicts future commodity returns, both in‐sample and out‐of‐sample. Furthermore, it outperforms traditional textual analysis methods, including Bidirectional Encoder Representations from Transformers (BERT) and Bag‐of‐Words (BoW), while indicating economic significance within an asset allocation framework. The results highlight the critical role of ChatGPT in forecasting commodity market dynamics and provide valuable insights for both financial market participants and researchers.

Suggested Citation

  • Shen Gao & Shijie Wang & Yuanzhi Wang & Qunzi Zhang, 2025. "ChatGPT and Commodity Return," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 45(3), pages 161-175, March.
  • Handle: RePEc:wly:jfutmk:v:45:y:2025:i:3:p:161-175
    DOI: 10.1002/fut.22568
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/fut.22568
    Download Restriction: no

    File URL: https://libkey.io/10.1002/fut.22568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Robert Ready & Nikolai Roussanov & Colin Ward, 2017. "Commodity Trade and the Carry Trade: A Tale of Two Countries," Journal of Finance, American Finance Association, vol. 72(6), pages 2629-2684, December.
    3. Browne, Frank & Cronin, David, 2010. "Commodity prices, money and inflation," Journal of Economics and Business, Elsevier, vol. 62(4), pages 331-345, July.
    4. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    5. repec:bla:jfinan:v:58:y:2003:i:3:p:975-1008 is not listed on IDEAS
    6. Narayan, Paresh Kumar & Sharma, Susan Sunila, 2011. "New evidence on oil price and firm returns," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3253-3262.
    7. Ari Levine & Yao Hua Ooi & Matthew Richardson & Caroline Sasseville, 2018. "Commodities for the Long Run," Financial Analysts Journal, Taylor & Francis Journals, vol. 74(2), pages 55-68, April.
    8. Lutz Kilian & Xiaoqing Zhou, 2022. "Oil prices, gasoline prices, and inflation expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 867-881, August.
    9. Han, Yufeng & Zhou, Guofu & Zhu, Yingzi, 2016. "A trend factor: Any economic gains from using information over investment horizons?," Journal of Financial Economics, Elsevier, vol. 122(2), pages 352-375.
    10. Changyun Wang, 2001. "Investor Sentiment and Return Predictability in Agricultural Futures Markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(10), pages 929-952, October.
    11. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    12. Ge, Yiqing & Tang, Ke, 2020. "Commodity prices and GDP growth," International Review of Financial Analysis, Elsevier, vol. 71(C).
    13. Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
    14. Angela J. Black & Olga Klinkowska & David G. McMillan & Fiona J. McMillan, 2014. "Forecasting Stock Returns: Do Commodity Prices Help?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(8), pages 627-639, December.
    15. Smales, Lee A., 2014. "News sentiment in the gold futures market," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 275-286.
    16. Dashan Huang & Fuwei Jiang & Jun Tu & Guofu Zhou, 2015. "Investor Sentiment Aligned: A Powerful Predictor of Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 791-837.
    17. Manela, Asaf & Moreira, Alan, 2017. "News implied volatility and disaster concerns," Journal of Financial Economics, Elsevier, vol. 123(1), pages 137-162.
    18. Amit Goyal & Pedro Santa‐Clara, 2003. "Idiosyncratic Risk Matters!," Journal of Finance, American Finance Association, vol. 58(3), pages 975-1007, June.
    19. Malik, Farooq & Hammoudeh, Shawkat, 2007. "Shock and volatility transmission in the oil, US and Gulf equity markets," International Review of Economics & Finance, Elsevier, vol. 16(3), pages 357-368.
    20. Paul C. Tetlock, 2007. "Giving Content to Investor Sentiment: The Role of Media in the Stock Market," Journal of Finance, American Finance Association, vol. 62(3), pages 1139-1168, June.
    21. Qunzi Zhang, 2021. "One hundred years of rare disaster concerns and commodity prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(12), pages 1891-1915, December.
    22. Fuertes, Ana-Maria & Miffre, Joëlle & Rallis, Georgios, 2010. "Tactical allocation in commodity futures markets: Combining momentum and term structure signals," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2530-2548, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanzhi Wang & Xinbei Wei & Qunzi Zhang, 2025. "Asymmetric Commodity Tails and Index Futures Returns," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 45(3), pages 247-265, March.
    2. Wen, Danyan & Liu, Li & Wang, Yudong & Zhang, Yaojie, 2022. "Forecasting crude oil market returns: Enhanced moving average technical indicators," Resources Policy, Elsevier, vol. 76(C).
    3. Ma, Feng & Wang, Ruoxin & Lu, Xinjie & Wahab, M.I.M., 2021. "A comprehensive look at stock return predictability by oil prices using economic constraint approaches," International Review of Financial Analysis, Elsevier, vol. 78(C).
    4. Dai, Zhifeng & Zhu, Huan, 2020. "Stock return predictability from a mixed model perspective," Pacific-Basin Finance Journal, Elsevier, vol. 60(C).
    5. Dai, Zhifeng & Dong, Xiaodi & Kang, Jie & Hong, Lianying, 2020. "Forecasting stock market returns: New technical indicators and two-step economic constraint method," The North American Journal of Economics and Finance, Elsevier, vol. 53(C).
    6. Pan, Zhiyuan & Zhong, Hao & Wang, Yudong & Huang, Juan, 2024. "Forecasting oil futures returns with news," Energy Economics, Elsevier, vol. 134(C).
    7. Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
    8. Jiang, Fuwei & Kang, Jie & Meng, Lingchao, 2024. "Certainty of uncertainty for asset pricing," Journal of Empirical Finance, Elsevier, vol. 78(C).
    9. Nonejad, Nima, 2020. "Crude oil price volatility and equity return predictability: A comparative out-of-sample study," International Review of Financial Analysis, Elsevier, vol. 71(C).
    10. He, Mengxi & Zhang, Yaojie, 2022. "Climate policy uncertainty and the stock return predictability of the oil industry," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    11. Guofu Zhou, 2018. "Measuring Investor Sentiment," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 239-259, November.
    12. Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
    13. Yaojie Zhang & Mengxi He & Zhikai Zhang, 2024. "Forecasting stock returns with industry volatility concentration," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2705-2730, November.
    14. Su, Yuandong & Lu, Xinjie & Zeng, Qing & Huang, Dengshi, 2022. "Good air quality and stock market returns," Research in International Business and Finance, Elsevier, vol. 62(C).
    15. Yaojie Zhang & Feng Ma & Chao Liang & Yi Zhang, 2021. "Good variance, bad variance, and stock return predictability," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4410-4423, July.
    16. Yu, Deshui & Huang, Difang, 2023. "Cross-sectional uncertainty and expected stock returns," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 321-340.
    17. Phan, Dinh Hoang Bach & Sharma, Susan Sunila & Tran, Vuong Thao, 2018. "Can economic policy uncertainty predict stock returns? Global evidence," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 55(C), pages 134-150.
    18. Zhang, Yaojie & Wei, Yu & Ma, Feng & Yi, Yongsheng, 2019. "Economic constraints and stock return predictability: A new approach," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 1-9.
    19. Yin, Libo & Wang, Yang, 2019. "Forecasting the oil prices: What is the role of skewness risk?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    20. Dai, Zhifeng & Zhu, Huan, 2021. "Indicator selection and stock return predictability," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:45:y:2025:i:3:p:161-175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.