IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v35y2016i5p400-418.html
   My bibliography  Save this article

The Role of Survey Data in Nowcasting Euro Area GDP Growth

Author

Listed:
  • Alessandro Girardi
  • Christian Gayer
  • Andreas Reuter

Abstract

This paper evaluates the impact of new releases of financial, real activity and survey data on nowcasting euro area gross domestic product (GDP). We show that all three data categories positively impact on the accuracy of GDP nowcasts, whereby the effect is largest in the case of real activity data. When treating variables as if they were all published at the same time and without any time lag, financial series lose all their significance, while survey data remain an important ingredient for the nowcasting exercise. The subsequent analysis shows that the sectoral coverage of survey data, which is broader than that of timely available real activity data, as well as their information content stemming from questions focusing on agents' expectations, are the main sources of the ‘genuine’ predictive power of survey data. When the forecast period is restricted to the 2008–09 financial crisis, the main change is an enhanced forecasting role for financial data. Copyright © 2015 John Wiley & Sons, Ltd.

Suggested Citation

  • Alessandro Girardi & Christian Gayer & Andreas Reuter, 2016. "The Role of Survey Data in Nowcasting Euro Area GDP Growth," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(5), pages 400-418, August.
  • Handle: RePEc:wly:jforec:v:35:y:2016:i:5:p:400-418
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Werner Hölzl & Gerhard Schwarz, 2014. "Der WIFO-Konjunkturtest: Methodik und Prognoseeigenschaften," WIFO Monatsberichte (monthly reports), WIFO, vol. 87(12), pages 835-850, December.
    2. Johanna Garnitz & Robert Lehmann & Klaus Wohlrabe, 2019. "Forecasting GDP all over the world using leading indicators based on comprehensive survey data," CESifo Working Paper Series 7691, CESifo Group Munich.
    3. Evzen Kocenda & Karen Poghosyan, 2018. "Nowcasting real GDP growth with business tendency surveys data: A cross country analysis," KIER Working Papers 1002, Kyoto University, Institute of Economic Research.
    4. Garnitz, Johanna & Lehmann, Robert & Wohlrabe, Klaus, 2017. "Forecasting GDP all over the World: Evidence from Comprehensive Survey Data," MPRA Paper 81772, University Library of Munich, Germany.
    5. repec:eee:ecmode:v:64:y:2017:i:c:p:26-39 is not listed on IDEAS
    6. repec:eee:ecmode:v:67:y:2017:i:c:p:294-299 is not listed on IDEAS
    7. Siliverstovs, Boriss, 2017. "Dissecting models' forecasting performance," Economic Modelling, Elsevier, vol. 67(C), pages 294-299.
    8. Mogliani, Matteo & Darné, Olivier & Pluyaud, Bertrand, 2017. "The new MIBA model: Real-time nowcasting of French GDP using the Banque de France's monthly business survey," Economic Modelling, Elsevier, vol. 64(C), pages 26-39.
    9. repec:taf:applec:v:50:y:2018:i:42:p:4540-4555 is not listed on IDEAS
    10. Simón Sosvilla-Rivero & María del Carmen Ramos-Herrera, 2018. "Inflation, real economic growth and unemployment expectations: an empirical analysis based on the ECB survey of professional forecasters," Applied Economics, Taylor & Francis Journals, vol. 50(42), pages 4540-4555, September.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:35:y:2016:i:5:p:400-418. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.