IDEAS home Printed from https://ideas.repec.org/a/wly/japmet/v39y2024i3p365-382.html
   My bibliography  Save this article

Binary endogenous treatment in stochastic frontier models with an application to soil conservation in El Salvador

Author

Listed:
  • Samuele Centorrino
  • María Pérez‐Urdiales
  • Boris Bravo‐Ureta
  • Alan Wall

Abstract

Numerous programs exist to promote productivity, alleviate poverty, and enhance food security in developing countries. Stochastic frontier analysis can be helpful to assess their effectiveness. However, challenges can arise when accounting for treatment endogeneity, often intrinsic to these interventions. We study maximum likelihood estimation of stochastic frontier models when both the frontier and inefficiency depend on a potentially endogenous binary treatment. We use instrumental variables to define an assignment mechanism and explicitly model the density of the first and second‐stage error terms. We provide empirical evidence using data from a soil conservation program in El Salvador.

Suggested Citation

  • Samuele Centorrino & María Pérez‐Urdiales & Boris Bravo‐Ureta & Alan Wall, 2024. "Binary endogenous treatment in stochastic frontier models with an application to soil conservation in El Salvador," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(3), pages 365-382, April.
  • Handle: RePEc:wly:japmet:v:39:y:2024:i:3:p:365-382
    DOI: 10.1002/jae.3020
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/jae.3020
    Download Restriction: no

    File URL: https://libkey.io/10.1002/jae.3020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Whang, 2005. "Consistent Testing for Stochastic Dominance under General Sampling Schemes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 735-765.
    2. Guido W. Imbens & Whitney K. Newey, 2009. "Identification and Estimation of Triangular Simultaneous Equations Models Without Additivity," Econometrica, Econometric Society, vol. 77(5), pages 1481-1512, September.
    3. Michael J. Wasylenko & Rodney A. Erickson, 1978. ""On Measuring Economic Diversification": Comment," Land Economics, University of Wisconsin Press, vol. 54(1), pages 106-109.
    4. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521471626, October.
    5. Centorrino, Samuele & Pérez-Urdiales, María, 2023. "Maximum likelihood estimation of stochastic frontier models with endogeneity," Journal of Econometrics, Elsevier, vol. 234(1), pages 82-105.
    6. Lee, Lung-Fei & Chesher, Andrew, 1986. "Specification testing when score test statistics are identically zero," Journal of Econometrics, Elsevier, vol. 31(2), pages 121-149, March.
    7. Seunghwa Rho & Peter Schmidt, 2015. "Are all firms inefficient?," Journal of Productivity Analysis, Springer, vol. 43(3), pages 327-349, June.
    8. Nusrat Abedin Jimi & Plamen V. Nikolov & Mohammad Abdul Malek & Subal Kumbhakar, 2019. "The effects of access to credit on productivity: separating technological changes from changes in technical efficiency," Journal of Productivity Analysis, Springer, vol. 52(1), pages 37-55, December.
    9. Boris Bravo & Horacio Cocchi & Daniel Solís, 2006. "Adoption of Soil Conservation Technologies in El Salvador: A cross-Section and Over-Time Analysis," OVE Working Papers 1806, Inter-American Development Bank, Office of Evaluation and Oversight (OVE).
    10. Matteo Bottai, 2003. "Confidence regions when the Fisher information is zero," Biometrika, Biometrika Trust, vol. 90(1), pages 73-84, March.
    11. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    12. Wilde, Joachim, 2008. "A simple representation of the Bera-Jarque-Lee test for probit models," Economics Letters, Elsevier, vol. 101(2), pages 119-121, November.
    13. Yair Mundlak, 1961. "Empirical Production Function Free of Management Bias," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 43(1), pages 44-56.
    14. Lee, Lung-Fei, 1993. "Asymptotic Distribution of the Maximum Likelihood Estimator for a Stochastic Frontier Function Model with a Singular Information Matrix," Econometric Theory, Cambridge University Press, vol. 9(3), pages 413-430, June.
    15. Subal Kumbhakar & Efthymios Tsionas & Timo Sipiläinen, 2009. "Joint estimation of technology choice and technical efficiency: an application to organic and conventional dairy farming," Journal of Productivity Analysis, Springer, vol. 31(3), pages 151-161, June.
    16. Kumbhakar, Subal C. & Parmeter, Christopher F. & Tsionas, Efthymios G., 2013. "A zero inefficiency stochastic frontier model," Journal of Econometrics, Elsevier, vol. 172(1), pages 66-76.
    17. Whitney K. Newey & James L. Powell & Francis Vella, 1999. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Econometrica, Econometric Society, vol. 67(3), pages 565-604, May.
    18. William Greene, 2010. "A stochastic frontier model with correction for sample selection," Journal of Productivity Analysis, Springer, vol. 34(1), pages 15-24, August.
    19. Lee, Lung-Fei & Tyler, William G., 1978. "The stochastic frontier production function and average efficiency : An empirical analysis," Journal of Econometrics, Elsevier, vol. 7(3), pages 385-389, April.
    20. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models 2 volume set," Cambridge Books, Cambridge University Press, number 9780521478373, July.
    21. Boris Bravo-Ureta & William Greene & Daniel Solís, 2012. "Technical efficiency analysis correcting for biases from observed and unobserved variables: an application to a natural resource management project," Empirical Economics, Springer, vol. 43(1), pages 55-72, August.
    22. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2017. "Endogenous environmental variables in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 199(2), pages 131-140.
    23. Donald W. K. Andrews, 1999. "Estimation When a Parameter Is on a Boundary," Econometrica, Econometric Society, vol. 67(6), pages 1341-1384, November.
    24. Schmidt, Peter & Sickles, Robin C, 1984. "Production Frontiers and Panel Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 367-374, October.
    25. Boris E. Bravo‐Ureta & Mario González‐Flores & William Greene & Daniel Solís, 2021. "Technology and Technical Efficiency Change: Evidence from a Difference in Differences Selectivity Corrected Stochastic Production Frontier Model," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(1), pages 362-385, January.
    26. Hung-pin Lai, 2015. "Maximum likelihood estimation of the stochastic frontier model with endogenous switching or sample selection," Journal of Productivity Analysis, Springer, vol. 43(1), pages 105-117, February.
    27. Antonio Alvarez & Christine Amsler & Luis Orea & Peter Schmidt, 2006. "Interpreting and Testing the Scaling Property in Models where Inefficiency Depends on Firm Characteristics," Journal of Productivity Analysis, Springer, vol. 25(3), pages 201-212, June.
    28. Yi-Ting Chen & Yu-Chin Hsu & Hung-Jen Wang, 2020. "A Stochastic Frontier Model with Endogenous Treatment Status and Mediator," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 243-256, April.
    29. Lai, Hung-pin & Kumbhakar, Subal C., 2018. "Endogeneity in panel data stochastic frontier model with determinants of persistent and transient inefficiency," Economics Letters, Elsevier, vol. 162(C), pages 5-9.
    30. Heckman, James J. & Robb, Richard Jr., 1985. "Alternative methods for evaluating the impact of interventions : An overview," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 239-267.
    31. Nadine McCloud & Subal C. Kumbhakar, 2008. "Do subsidies drive productivity? A cross-country analysis of Nordic dairy farms," Advances in Econometrics, in: Bayesian Econometrics, pages 245-274, Emerald Group Publishing Limited.
    32. Andrews, Donald W K, 2001. "Testing When a Parameter Is on the Boundary of the Maintained Hypothesis," Econometrica, Econometric Society, vol. 69(3), pages 683-734, May.
    33. Guggenberger, Patrik, 2010. "The Impact Of A Hausman Pretest On The Asymptotic Size Of A Hypothesis Test," Econometric Theory, Cambridge University Press, vol. 26(2), pages 369-382, April.
    34. Boris E. Bravo-Ureta & Horacio Cocchi & Daniel Solís, 2006. "Adoption of Soil Conservation Technologies in El Salvador: A Cross-Section and Over-Time Analysis," IDB Publications (Working Papers) 24418, Inter-American Development Bank.
    35. Jeffrey M. Wooldridge, 2015. "Control Function Methods in Applied Econometrics," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 420-445.
    36. Kutlu, Levent & Tran, Kien C. & Tsionas, Mike G., 2019. "A time-varying true individual effects model with endogenous regressors," Journal of Econometrics, Elsevier, vol. 211(2), pages 539-559.
    37. repec:zwi:journl:v:43:y:2012:i:1:p:55-72 is not listed on IDEAS
    38. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    39. Kumbhakar,Subal C. & Lovell,C. A. Knox, 2003. "Stochastic Frontier Analysis," Cambridge Books, Cambridge University Press, number 9780521666633, October.
    40. Parmeter, Christopher F. & Kumbhakar, Subal C., 2014. "Efficiency Analysis: A Primer on Recent Advances," Foundations and Trends(R) in Econometrics, now publishers, vol. 7(3-4), pages 191-385, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pérez, María & Libra, Jesse & Machado, Kleber & Serebrisky, Tomás & Solís, Ben, 2022. "Water Bill Perception in Brazil: Do Households Get It Right?," EconStor Preprints 264986, ZBW - Leibniz Information Centre for Economics.
    2. Pérez-Urdiales, María & Libra, Jesse M. & Machado, Kleber B. & Serebrisky, Tomás & Sosa, Ben Solís, 2024. "Household water bill perception in Brazil," Utilities Policy, Elsevier, vol. 87(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Centorrino, Samuele & Perez Urdiales, Mari­a & Bravo-Ureta, Boris & Wall, Alan, 2021. "Binary Endogenous Treatment in Stochastic Frontier Models with an Application to Soil Conservation in El Salvador," 95th Annual Conference, March 29-30, 2021, Warwick, UK (Hybrid) 312058, Agricultural Economics Society - AES.
    2. Centorrino, Samuele & Pérez-Urdiales, María, 2023. "Maximum likelihood estimation of stochastic frontier models with endogeneity," Journal of Econometrics, Elsevier, vol. 234(1), pages 82-105.
    3. German Blanco, 2017. "Who benefits from job placement services? A two-sided analysis," Journal of Productivity Analysis, Springer, vol. 47(1), pages 33-47, February.
    4. K Hervé Dakpo & Laure Latruffe & Yann Desjeux & Philippe Jeanneaux, 2022. "Modeling heterogeneous technologies in the presence of sample selection: The case of dairy farms and the adoption of agri‐environmental schemes in France," Agricultural Economics, International Association of Agricultural Economists, vol. 53(3), pages 422-438, May.
    5. Ali M. Oumer & Amin Mugera & Michael Burton & Atakelty Hailu, 2022. "Technical efficiency and firm heterogeneity in stochastic frontier models: application to smallholder maize farms in Ethiopia," Journal of Productivity Analysis, Springer, vol. 57(2), pages 213-241, April.
    6. Boris E. Bravo‐Ureta & Mario González‐Flores & William Greene & Daniel Solís, 2021. "Technology and Technical Efficiency Change: Evidence from a Difference in Differences Selectivity Corrected Stochastic Production Frontier Model," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(1), pages 362-385, January.
    7. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    8. Christopher F. Parmeter & Alan T. K. Wan & Xinyu Zhang, 2019. "Model averaging estimators for the stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 51(2), pages 91-103, June.
    9. Orea, Luis, 2019. "The Econometric Measurement of Firms’ Efficiency," Efficiency Series Papers 2019/02, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    10. Jianxu Liu & Sanzidur Rahman & Songsak Sriboonchitta & Aree Wiboonpongse, 2017. "Enhancing Productivity and Resource Conservation by Eliminating Inefficiency of Thai Rice Farmers: A Zero Inefficiency Stochastic Frontier Approach," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    11. Seunghwa Rho & Peter Schmidt, 2015. "Are all firms inefficient?," Journal of Productivity Analysis, Springer, vol. 43(3), pages 327-349, June.
    12. Won-Sik Hwang & Ho-Sung Kim, 2022. "Does the adoption of emerging technologies improve technical efficiency? Evidence from Korean manufacturing SMEs," Small Business Economics, Springer, vol. 59(2), pages 627-643, August.
    13. Kutlu, Levent, 2017. "A constrained state space approach for estimating firm efficiency," Economics Letters, Elsevier, vol. 152(C), pages 54-56.
    14. Mustafa U. Karakaplan & Levent Kutlu, 2019. "School district consolidation policies: endogenous cost inefficiency and saving reversals," Empirical Economics, Springer, vol. 56(5), pages 1729-1768, May.
    15. Christopher F. Parmeter, 2018. "Estimation of the two-tiered stochastic frontier model with the scaling property," Journal of Productivity Analysis, Springer, vol. 49(1), pages 37-47, February.
    16. Mark Andor & Christopher Parmeter, 2017. "Pseudolikelihood estimation of the stochastic frontier model," Applied Economics, Taylor & Francis Journals, vol. 49(55), pages 5651-5661, November.
    17. Alexander D. Stead & Phill Wheat & William H. Greene, 2023. "On hypothesis testing in latent class and finite mixture stochastic frontier models, with application to a contaminated normal-half normal model," Journal of Productivity Analysis, Springer, vol. 60(1), pages 37-48, August.
    18. Liu, Xiao-Yan & Pollitt, Michael G. & Xie, Bai-Chen & Liu, Li-Qiu, 2019. "Does environmental heterogeneity affect the productive efficiency of grid utilities in China?," Energy Economics, Elsevier, vol. 83(C), pages 333-344.
    19. Paul, Satya & Shankar, Sriram, 2018. "Modelling Efficiency Effects in a True Fixed Effects Stochastic Frontier," MPRA Paper 87437, University Library of Munich, Germany.
    20. Tran, Kien C. & Tsionas, Mike G., 2016. "Zero-inefficiency stochastic frontier models with varying mixing proportion: A semiparametric approach," European Journal of Operational Research, Elsevier, vol. 249(3), pages 1113-1123.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:japmet:v:39:y:2024:i:3:p:365-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0883-7252/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.