IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v22y2015i2p153-178.html
   My bibliography  Save this article

A Dynamic Fuzzy Money Management Approach for Controlling the Intraday Risk‐Adjusted Performance of AI Trading Algorithms

Author

Listed:
  • Vince Vella
  • Wing Lon Ng

Abstract

The majority of existing artificial intelligence (AI) studies in computational finance literature are devoted solely to predicting market movements. In this paper we shift the attention to how AI can be applied to control risk‐based money management decisions. We propose an innovative fuzzy logic approach which identifies and categorizes technical rules performance across different regions in the trend and volatility space. The model dynamically prioritizes higher performing regions at an intraday level and adapts money management policies with the objective to maximize global risk‐adjusted performance. By adopting a hybrid method in conjunction with a popular neural network (NN) trend prediction model, our results show significant performance improvements compared with both standard NN and buy‐and‐hold approaches. Copyright © 2014 John Wiley & Sons, Ltd.

Suggested Citation

  • Vince Vella & Wing Lon Ng, 2015. "A Dynamic Fuzzy Money Management Approach for Controlling the Intraday Risk‐Adjusted Performance of AI Trading Algorithms," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 22(2), pages 153-178, April.
  • Handle: RePEc:wly:isacfm:v:22:y:2015:i:2:p:153-178
    DOI: 10.1002/isaf.1359
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/isaf.1359
    Download Restriction: no

    References listed on IDEAS

    as
    1. Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
    2. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    3. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 1-30.
    4. LeBaron, Blake, 1999. "Technical trading rule profitability and foreign exchange intervention," Journal of International Economics, Elsevier, vol. 49(1), pages 125-143, October.
    5. Holmberg, Ulf & Lönnbark, Carl & Lundström, Christian, 2013. "Assessing the profitability of intraday opening range breakout strategies," Finance Research Letters, Elsevier, vol. 10(1), pages 27-33.
    6. Schulmeister, Stephan, 2006. "The interaction between technical currency trading and exchange rate fluctuations," Finance Research Letters, Elsevier, vol. 3(3), pages 212-233, September.
    7. Michael McAleer & Marcelo Medeiros, 2008. "Realized Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 10-45.
    8. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    9. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    10. Schulmeister, Stephan, 2009. "Profitability of technical stock trading: Has it moved from daily to intraday data?," Review of Financial Economics, Elsevier, vol. 18(4), pages 190-201, October.
    11. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    12. Christoffersen, Peter, 2011. "Elements of Financial Risk Management," Elsevier Monographs, Elsevier, edition 2, number 9780123744487.
    13. Gradojevic, Nikola & Gençay, Ramazan, 2013. "Fuzzy logic, trading uncertainty and technical trading," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 578-586.
    14. Timo Teräsvirta & Marcelo C. Medeiros & Gianluigi Rech, 2006. "Building neural network models for time series: a statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 49-75.
    15. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    16. Andersen, Torben G. & Bollerslev, Tim & Cai, Jun, 2000. "Intraday and interday volatility in the Japanese stock market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 10(2), pages 107-130, June.
    17. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:22:y:2015:i:2:p:153-178. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.