IDEAS home Printed from https://ideas.repec.org/a/wly/hlthec/v22y2013i9p1052-1070.html
   My bibliography  Save this article

Highlighting Differences Between Conditional And Unconditional Quantile Regression Approaches Through An Application To Assess Medication Adherence

Author

Listed:
  • Bijan J. Borah
  • Anirban Basu

Abstract

The quantile regression (QR) framework provides a pragmatic approach in understanding the differential impacts of covariates along the distribution of an outcome. However, the QR framework that has pervaded the applied economics literature is based on the conditional quantile regression method. It is used to assess the impact of a covariate on a quantile of the outcome conditional on specific values of other covariates. In most cases, conditional quantile regression may generate results that are often not generalizable or interpretable in a policy or population context. In contrast, the unconditional quantile regression method provides more interpretable results as it marginalizes the effect over the distributions of other covariates in the model. In this paper, the differences between these two regression frameworks are highlighted, both conceptually and econometrically. Additionally, using real‐world claims data from a large US health insurer, alternative QR frameworks are implemented to assess the differential impacts of covariates along the distribution of medication adherence among elderly patients with Alzheimer's disease. Copyright © 2013 John Wiley & Sons, Ltd.

Suggested Citation

  • Bijan J. Borah & Anirban Basu, 2013. "Highlighting Differences Between Conditional And Unconditional Quantile Regression Approaches Through An Application To Assess Medication Adherence," Health Economics, John Wiley & Sons, Ltd., vol. 22(9), pages 1052-1070, September.
  • Handle: RePEc:wly:hlthec:v:22:y:2013:i:9:p:1052-1070
    DOI: 10.1002/hec.2927
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/hec.2927
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Manning, Willard G. & Basu, Anirban & Mullahy, John, 2005. "Generalized modeling approaches to risk adjustment of skewed outcomes data," Journal of Health Economics, Elsevier, vol. 24(3), pages 465-488, May.
    2. Sergio Firpo & Nicole M. Fortin & Thomas Lemieux, 2009. "Unconditional Quantile Regressions," Econometrica, Econometric Society, vol. 77(3), pages 953-973, May.
    3. Manning, Willard G. & Blumberg, Linda & Moulton, Lawrence H., 1995. "The demand for alcohol: The differential response to price," Journal of Health Economics, Elsevier, vol. 14(2), pages 123-148, June.
    4. Jason Abrevaya, 2001. "The effects of demographics and maternal behavior on the distribution of birth outcomes," Empirical Economics, Springer, vol. 26(1), pages 247-257.
    5. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    6. Ai, Chunrong & Norton, Edward C., 2003. "Interaction terms in logit and probit models," Economics Letters, Elsevier, vol. 80(1), pages 123-129, July.
    7. José Mata & José A. F. Machado, 2005. "Counterfactual decomposition of changes in wage distributions using quantile regression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Graham, Bryan S. & Hahn, Jinyong & Poirier, Alexandre & Powell, James L., 2018. "A quantile correlated random coefficients panel data model," Journal of Econometrics, Elsevier, vol. 206(2), pages 305-335.
    2. Waltl, Sofie R., 2018. "Estimating quantile-specific rental yields for residential housing in Sydney," Regional Science and Urban Economics, Elsevier, vol. 68(C), pages 204-225.
    3. Javier Alejo & Maria Florencia Gabrielli & Walter Sosa-Escudero, 2014. "The Distributive Effects of Education: An Unconditional Quantile Regression Approach," Revista de Analisis Economico – Economic Analysis Review, Universidad Alberto Hurtado/School of Economics and Business, vol. 29(1), pages 53-76, April.
    4. Victor Chernozhukov & Iván Fernández-Val & Blaise Melly, 0. "Fast algorithms for the quantile regression process," Empirical Economics, Springer, vol. 0, pages 1-27.
    5. RAMDANI, Dendi & VAN WITTELOOSTUIJN, Arjen, 2009. "Board independence, CEO duality and firm performance: A quantile regression analysis for Indonesia, Malaysia, South Korea and Thailand," Working Papers 2009004, University of Antwerp, Faculty of Business and Economics.
    6. El Moctar LAGHLAL, 2018. "Decomposition of urban-rural inequality in Mauritania," LEO Working Papers / DR LEO 2587, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    7. Collischon Matthias, 2019. "Is There a Glass Ceiling over Germany?," German Economic Review, De Gruyter, vol. 20(4), pages 329-359, December.
    8. Wang, Wen & Lien, Donald, 2018. "Union membership, union coverage and wage dispersion of rural migrants: Evidence from Suzhou industrial sector," China Economic Review, Elsevier, vol. 49(C), pages 96-113.
    9. Akwasi Ampofo, 2021. "Oil at work: natural resource effects on household well-being in Ghana," Empirical Economics, Springer, vol. 60(2), pages 1013-1058, February.
    10. Chi, Wei & Li, Bo, 2007. "Glass Ceiling or Sticky Floor? Examining the Gender Pay Gap across the Wage Distribution in Urban China, 1987-2004," MPRA Paper 3544, University Library of Munich, Germany.
    11. Shantanu Khanna & Deepti Goel & René Morissette, 2016. "Decomposition analysis of earnings inequality in rural India: 2004–2012," IZA Journal of Labor & Development, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 5(1), pages 1-26, December.
    12. Zhu, Rong, 2016. "Wage differentials between urban residents and rural migrants in urban China during 2002–2007: A distributional analysis," China Economic Review, Elsevier, vol. 37(C), pages 2-14.
    13. Thomas Grandner & Dieter Gstach, 2015. "Decomposing wage discrimination in Germany and Austria with counterfactual densities," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 42(1), pages 49-76, February.
    14. Domenico Depalo & Raffaela Giordano & Evangelia Papapetrou, 2015. "Public–private wage differentials in euro-area countries: evidence from quantile decomposition analysis," Empirical Economics, Springer, vol. 49(3), pages 985-1015, November.
    15. Maloney, William F. & Sarrias, Mauricio, 2017. "Convergence to the managerial frontier," Journal of Economic Behavior & Organization, Elsevier, vol. 134(C), pages 284-306.
    16. Rosalia Castellano & Gaetano Musella & Gennaro Punzo, 2019. "Exploring changes in the employment structure and wage inequality in Western Europe using the unconditional quantile regression," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 46(2), pages 249-304, May.
    17. VAN KERM Philippe & YU Seunghee & CHOE Chung, 2014. "Wage differentials between native, immigrant and cross-border workers: Evidence and model comparisons," LISER Working Paper Series 2014-05, LISER.
    18. Huong Thu Le & Alison L. Booth, 2014. "Inequality in Vietnamese Urban–Rural Living Standards, 1993–2006," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(4), pages 862-886, December.
    19. Nataraj, Shanthi, 2011. "The impact of trade liberalization on productivity: Evidence from India's formal and informal manufacturing sectors," Journal of International Economics, Elsevier, vol. 85(2), pages 292-301.
    20. Jones, A. & Lomas, J. & Rice, N., 2014. "Going Beyond the Mean in Healthcare Cost Regressions: a Comparison of Methods for Estimating the Full Conditional Distribution," Health, Econometrics and Data Group (HEDG) Working Papers 14/26, HEDG, c/o Department of Economics, University of York.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:hlthec:v:22:y:2013:i:9:p:1052-1070. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/5749 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.