IDEAS home Printed from https://ideas.repec.org/p/aoz/wpaper/217.html

Unconditional Quantile Partial Effects via Conditional Quantile Regression

Author

Listed:
  • Javier Alejo

    (IECON-Universidad de la República)

  • Antonio F. Galvao

    (Michigan State University)

  • Julián Martinez-Iriarte

    (UC Santa Cruz)

  • Gabriel Montes-Rojas

    (Universidad de Buenos Aires/CONICET)

Abstract

This paper develops a semi-parametric procedure for estimation of unconditional quantile partial effects using quantile regression coefficients. The main result is based on the fact that, for continuous covariates, unconditional quantile effects are a weighted average of conditional ones at particular quantile levels that depend on the covariates. We propose a two-step estimator for the unconditional effects where in the first step one estimates a structural quantile regression model, and in the second step a non-parametric regression is applied to the first step coefficients. We establish the asymptotic properties of the estimator, say consistency and asymptotic normality. Monte Carlo simulations show numerical evidence that the estimator has very good finite sample performance and is robust to the selection of bandwidth and kernel. To illustrate the proposed method, we study the canonical application of the Engel’s curve, i.e. food expenditures as a share of income.

Suggested Citation

  • Javier Alejo & Antonio F. Galvao & Julián Martinez-Iriarte & Gabriel Montes-Rojas, 2023. "Unconditional Quantile Partial Effects via Conditional Quantile Regression," Working Papers 217, Red Nacional de Investigadores en Economía (RedNIE).
  • Handle: RePEc:aoz:wpaper:217
    as

    Download full text from publisher

    File URL: https://rednie.eco.unc.edu.ar/files/DT/217.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. is not listed on IDEAS
    2. Martínez-Iriarte, Julián & Montes-Rojas, Gabriel & Sun, Yixiao, 2024. "Unconditional effects of general policy interventions," Journal of Econometrics, Elsevier, vol. 238(2).

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aoz:wpaper:217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Laura Inés D Amato (email available below). General contact details of provider: https://edirc.repec.org/data/redniar.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.