IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v36y2025i2ne2902.html
   My bibliography  Save this article

Fuzzy Clustering of Circular Time Series With Applications to Wind Data

Author

Listed:
  • Ángel López‐Oriona
  • Ying Sun
  • Rosa María Crujeiras

Abstract

In environmental science, practitioners often deal with data recorded sequentially along time, such as time series of wind direction or wind speed. In this context, clustering of time series is a useful tool to carry out exploratory analyses. While most of the proposals are focused on real‐valued time series, very few works consider circular time series, despite the frequent appearance of these objects in many disciplines. In this manuscript, a dissimilarity for circular time series is introduced and used in combination with a soft clustering method. The metric relies on a measure of serial dependence considering circular arcs, thus taking advantage of the directional character inherent to the series range. The clustering approach is able to group together time series generated from similar stochastic processes. Some simulations show that the method exhibits a reasonable clustering effectiveness, outperforming alternative techniques in many contexts. Two interesting applications involving time series of wind direction in Saudi Arabia show the potential of the proposed approach.

Suggested Citation

  • Ángel López‐Oriona & Ying Sun & Rosa María Crujeiras, 2025. "Fuzzy Clustering of Circular Time Series With Applications to Wind Data," Environmetrics, John Wiley & Sons, Ltd., vol. 36(2), March.
  • Handle: RePEc:wly:envmet:v:36:y:2025:i:2:n:e2902
    DOI: 10.1002/env.2902
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2902
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2902?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Harvey, Andrew & Hurn, Stan & Palumbo, Dario & Thiele, Stephen, 2024. "Modelling circular time series," Journal of Econometrics, Elsevier, vol. 239(1).
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Katinas, Vladislovas & Marčiukaitis, Mantas & Gecevičius, Giedrius & Markevičius, Antanas, 2017. "Statistical analysis of wind characteristics based on Weibull methods for estimation of power generation in Lithuania," Renewable Energy, Elsevier, vol. 113(C), pages 190-201.
    4. Rodríguez, Carlos E. & Núñez-Antonio, Gabriel & Escarela, Gabriel, 2020. "A Bayesian mixture model for clustering circular data," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    5. Roy Cerqueti & P. d'Urso & L. de Giovanni & R. Mattera & V. Vitale, 2022. "INGARCH-based fuzzy clustering of count time series with a football application," Post-Print hal-04321538, HAL.
    6. Roy Cerqueti & L. de Giovanni & P. d'Urso & M. Giacalone & R. Mattera, 2022. "Weighted score-driven fuzzy clustering of time series with a financial application," Post-Print hal-03789065, HAL.
    7. Kandpal, Divik & Dhingra, Tarun, 2021. "Migrating to reverse Auction mechanisms in wind energy sector: Status and challenges," Energy Policy, Elsevier, vol. 156(C).
    8. Renato Coppi & Pierpaolo D’Urso & Paolo Giordani, 2010. "A Fuzzy Clustering Model for Multivariate Spatial Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(1), pages 54-88, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy Cerqueti & Raffaele Mattera & Germana Scepi, 2024. "Multiway clustering with time-varying parameters," Computational Statistics, Springer, vol. 39(1), pages 51-92, February.
    2. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    3. Hauzenberger, Niko & Huber, Florian & Klieber, Karin & Marcellino, Massimiliano, 2025. "Bayesian neural networks for macroeconomic analysis," Journal of Econometrics, Elsevier, vol. 249(PC).
    4. Beran, Jan & Feng, Yuanhua, 1999. "Local Polynomial Estimation with a FARIMA-GARCH Error Process," CoFE Discussion Papers 99/08, University of Konstanz, Center of Finance and Econometrics (CoFE).
    5. Corbet, Shaen & Larkin, Charles & McMullan, Caroline, 2020. "The impact of industrial incidents on stock market volatility," Research in International Business and Finance, Elsevier, vol. 52(C).
    6. Minot, Nicholas, 2014. "Food price volatility in sub-Saharan Africa: Has it really increased?," Food Policy, Elsevier, vol. 45(C), pages 45-56.
    7. Lahmiri, Salim & Bekiros, Stelios, 2017. "Disturbances and complexity in volatility time series," Chaos, Solitons & Fractals, Elsevier, vol. 105(C), pages 38-42.
    8. Tomanova, Lucie, 2013. "Exchange Rate Volatility and the Foreign Trade in CEEC," EY International Congress on Economics I (EYC2013), October 24-25, 2013, Ankara, Turkey 267, Ekonomik Yaklasim Association.
    9. Chang, Chia-Lin, 2015. "Modelling a latent daily Tourism Financial Conditions Index," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 113-126.
    10. Hernández, Juan R., 2025. "Covered interest parity: A forecasting approach to estimate the neutral band," Economic Modelling, Elsevier, vol. 148(C).
    11. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    12. ?ikolaos A. Kyriazis, 2021. "Impacts of Stock Indices, Oil, and Twitter Sentiment on Major Cryptocurrencies during the COVID-19 First Wave," Bulletin of Applied Economics, Risk Market Journals, vol. 8(2), pages 133-146.
    13. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    14. Janneke van Brummelen & Paolo Gorgi & Siem Jan Koopman, 2025. "Score-driven time-varying parameter models with splinebased densities," Tinbergen Institute Discussion Papers 25-011/III, Tinbergen Institute.
    15. Juncal Cunado & David Gabauer & Rangan Gupta, 2024. "Realized volatility spillovers between energy and metal markets: a time-varying connectedness approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-17, December.
    16. Bentes, Sonia R. & Menezes, Rui, 2013. "On the predictability of realized volatility using feasible GLS," Journal of Asian Economics, Elsevier, vol. 28(C), pages 58-66.
    17. Akhtaruzzaman, Md & Boubaker, Sabri & Lucey, Brian M. & Sensoy, Ahmet, 2021. "Is gold a hedge or a safe-haven asset in the COVID–19 crisis?," Economic Modelling, Elsevier, vol. 102(C).
    18. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    19. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    20. SILVESTRINI, Andrea & VEREDAS, David, 2005. "Temporal aggregation of univariate linear time series models," LIDAM Discussion Papers CORE 2005059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:36:y:2025:i:2:n:e2902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.