IDEAS home Printed from https://ideas.repec.org/a/tsj/stataj/v11y2011i3p345-367.html
   My bibliography  Save this article

Nonparametric bounds for the causal effect in a binary instrumental-variable model

Author

Listed:
  • Tom M. Palmer

    (University of Bristol, UK)

  • Roland R. Ramsahai

    (University of Cambridge, UK)

  • Vanessa Didelez

    (University of Bristol, UK)

  • Nuala A. Sheehan

    (University of Leicester, UK)

Abstract

Instrumental variables can be used to make inferences about causal effects in the presence of unmeasured confounding. For a model in which the instrument, intermediate/treatment, and outcome variables are all binary, Balke and Pearl (1997, Journal of the American Statistical Association 92: 1172–1176) derived nonparametric bounds for the intervention probabilities and the average causal effect. We have implemented these bounds in two commands: bpbounds and bpboundsi. We have also implemented several extensions to these bounds. One of these extensions applies when the instrument and outcome are measured in one sample and the instrument and intermediate are measured in another sample. We have also implemented the bounds for an instrument with three categories, as is common in Mendelian randomization analyses in epidemiology and for the case where a monotonic effect of the instrument on the intermediate can be assumed. In each case, we calculate the instrumental-variable inequality constraints as a check for gross violations of the instrumental-variable conditions. The use of the commands is illustrated with a re-creation of the original Balke and Pearl analysis and with a Mendelian randomization analysis. We also give a simulated example to demonstrate that the instrumental-variable inequality constraints can both detect and fail to detect violations of the instrumental-variable conditions. Copyright 2011 by StataCorp LP.

Suggested Citation

  • Tom M. Palmer & Roland R. Ramsahai & Vanessa Didelez & Nuala A. Sheehan, 2011. "Nonparametric bounds for the causal effect in a binary instrumental-variable model," Stata Journal, StataCorp LP, vol. 11(3), pages 345-367, September.
  • Handle: RePEc:tsj:stataj:v:11:y:2011:i:3:p:345-367
    Note: to access software from within Stata, net describe http://www.stata-journal.com/software/sj11-3/st0232/
    as

    Download full text from publisher

    File URL: http://www.stata-journal.com/article.html?article=st0232
    File Function: link to article purchase
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2003. "Instrumental variables and GMM: Estimation and testing," Stata Journal, StataCorp LP, vol. 3(1), pages 1-31, March.
    2. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    3. Andrew Chesher, 2010. "Instrumental Variable Models for Discrete Outcomes," Econometrica, Econometric Society, vol. 78(2), pages 575-601, March.
    4. Paul S. Clarke & Frank Windmeijer, 2012. "Instrumental Variable Estimators for Binary Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1638-1652, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Geneletti, Sara & Baio, Gianluca & O'Keeffe, Aidan & Ricciardi, Federico, 2019. "Bayesian modelling for binary outcomes in the regression discontinuity design," LSE Research Online Documents on Economics 100096, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kitagawa, Toru, 2021. "The identification region of the potential outcome distributions under instrument independence," Journal of Econometrics, Elsevier, vol. 225(2), pages 231-253.
    2. Jarke-Neuert, Johannes & Perino, Grischa & Schwickert, Henrike, 2021. "Free-Riding for Future: Field Experimental Evidence of Strategic Substitutability in Climate Protest," SocArXiv sh6dm, Center for Open Science.
    3. Lukáš Lafférs, 2019. "Identification in Models with Discrete Variables," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 657-696, February.
    4. Makate, Marshall & Makate, Clifton, 2016. "The causal effect of increased primary schooling on child mortality in Malawi: Universal primary education as a natural experiment," Social Science & Medicine, Elsevier, vol. 168(C), pages 72-83.
    5. Harry Patrinos & Chris Sakellariou, 2005. "Schooling and Labor Market Impacts of a Natural Policy Experiment," LABOUR, CEIS, vol. 19(4), pages 705-719, December.
    6. Lina Zhang & David T. Frazier & D. S. Poskitt & Xueyan Zhao, 2020. "Decomposing Identification Gains and Evaluating Instrument Identification Power for Partially Identified Average Treatment Effects," Papers 2009.02642, arXiv.org, revised Sep 2022.
    7. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    8. Goeun Lee & Myoung-jae Lee, 2023. "Regression Discontinuity for Binary Response and Local Maximum Likelihood Estimator to Extrapolate Treatment," Evaluation Review, , vol. 47(2), pages 182-208, April.
    9. Jean-Louis ARCAND & Béatrice D'HOMBRES & Paul GYSELINCK, 2004. "Instrument Choice and the Returns to Education: New Evidence from Vietnam," Working Papers 200422, CERDI.
    10. Possebom, Vitor, 2018. "Sharp bounds on the MTE with sample selection," MPRA Paper 89785, University Library of Munich, Germany.
    11. Koen Jochmans, 2011. "Identification in Bivariate binary-choice Models with elliptical innovations," Working Papers hal-01069483, HAL.
    12. Chris Sakellariou, 2006. "Education policy reform, local average treatment effect and returns to schooling from instrumental variables in the Philippines," Applied Economics, Taylor & Francis Journals, vol. 38(4), pages 473-481.
    13. Asadul Islam & Dietrich K. Fausten, 2008. "Skilled Immigration and Wages in Australia," The Economic Record, The Economic Society of Australia, vol. 84(s1), pages 66-82, September.
    14. Moler-Zapata, S.; & Grieve, R.; & Basu, A.; & O'Neill, S.;, 2022. "How does a local Instrumental Variable Method perform across settings with instruments of differing strengths? A simulation study and an evaluation of emergency surgery," Health, Econometrics and Data Group (HEDG) Working Papers 22/18, HEDG, c/o Department of Economics, University of York.
    15. Chen, Xuan & Flores, Carlos A. & Flores-Lagunes, Alfonso, 2015. "Going Beyond LATE: Bounding Average Treatment Effects of Job Corps Training," IZA Discussion Papers 9511, Institute of Labor Economics (IZA).
    16. Chiburis, Richard C., 2010. "Semiparametric bounds on treatment effects," Journal of Econometrics, Elsevier, vol. 159(2), pages 267-275, December.
    17. Tommasi, Denni & Zhang, Lina, 2024. "Bounding program benefits when participation is misreported," Journal of Econometrics, Elsevier, vol. 238(1).
    18. Tsai, Alexander C. & Venkataramani, Atheendar S., 2015. "The causal effect of education on HIV stigma in Uganda: Evidence from a natural experiment," Social Science & Medicine, Elsevier, vol. 142(C), pages 37-46.
    19. Myoung‐jae Lee, 2021. "Instrument residual estimator for any response variable with endogenous binary treatment," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 612-635, July.
    20. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09ij4oogc0g is not listed on IDEAS
    21. Paul Clarke & Frank Windmeijer, 2009. "Identification of Causal Effects on Binary Outcomes Using Structural Mean Models," The Centre for Market and Public Organisation 09/217, The Centre for Market and Public Organisation, University of Bristol, UK.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tsj:stataj:v:11:y:2011:i:3:p:345-367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum or Lisa Gilmore (email available below). General contact details of provider: http://www.stata-journal.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.