IDEAS home Printed from
   My bibliography  Save this article

Forecasting Regional Employment with Shift-Share and ARIMA Modelling


  • Matias Mayor
  • Ana Jesus Lopez
  • Rigoberto Perez


Mayor M., Lopez A. J. and Perez R. (2007) Forecasting regional employment with shift-share and ARIMA modelling, Regional Studies 41, 543-551. The analysis of different economic situations and risk factors is necessary in order to define forecasting scenarios properly. The paper focuses on the shift-share model as a useful tool in the definition of scenarios, based on the different components contributing to the change of a given economic variable (national, sectoral and competitive effects). Although the most commonly used methodology is based on the 'constant-shift' and 'constant-share' hypotheses, additional options can be considered to lead to more realistic scenarios. More specifically, a dynamic shift-share formulation is proposed that allows time changes in both the sectoral structure and the level of the considered variable. Once this new option has been developed, this approach is applied to define scenarios and forecast the regional employment in Asturias using the information provided by the Spanish Economically Active Population Survey (Encuesta de Poblacion Activa, EPA). Mayor M., Lopez A. J. et Perez R. (2007) La prevision de l'emploi regional a partir de la technique shift-share et de la modelisation ARIMI, Regional Studies 41, 543-551. Il faut l'analyse de differentes situations economiques et facteurs de risque pour definir avec precision des prospectives. Cet article porte sur la technique comme outil utile pour definir des prospectives, fonde sur la variation d'une variable economique donnee (effets nationaux, sectoriels, et concurrentiels). Bien que la methodologie la plus frequemment employee soit fondee sur les hypotheses dits 'constant-shift' et 'constant-share', on peut considerer d'autres possibilites, ce qui entraine des prospectives plus realistes. Plus particulierement, on propose une elaboration dynamique de la technique shift-share, permettant l'evolution temporelle de la struture sectorielle et du niveau de la variable en question. Une fois developpee, cette nouvelle possibilite se voit appliquer afin de definir des prospectives et de prevoir l'emploi regional en Asturias a partir des donnees provenant de la Encuesta de Poblacion Activa, EPA, (enquete sur la population active en Espagne). Prevision Shift-share Prospectives Enquete sur la population active (EPA) Mayor M., Lopez A. J. und Perez R. (2007) Prognose des regionalen Beschaftigungsniveaus durch Shift-Share- und ARIMA-Modelle, Regional Studies 41, 543-551. Fur eine brauchbare Definition von Prognoseszenarien ist eine Analyse verschiedener wirtschaftlicher Situationen und Risikofaktoren erforderlich. In diesem Beitrag konzentrieren wir uns auf das Shift-Share-Modell als nutzliches Instrument zur Definition von Szenarien anhand der verschiedenen Komponenten, die zur Veranderung einer gegebenen wirtschaftlichen Variablen (nationale, sektorale und wettbewerbsbezogene Auswirkungen) beitragen. Die gangige Methodologie basiert auf den Hypothesen einer konstanten Veranderung ('Shift') und eines konstanten Anteils ('Share'), doch es lassen sich auch weitere Optionen berucksichtigen, die zu realistischeren Szenarien fuhren. Insbesondere schlagen wir eine dynamische Shift-Share-Formulierung vor, durch die zeitliche Veranderungen hinsichtlich der sektoralen Struktur und der Hohe der untersuchten Variablen berucksichtigt werden konnen. Nach Entwicklung dieser neuen Option wird dieser Ansatz zur Definition von Szenarien und zur Prognose des regionalen Beschaftigungsniveaus in Asturien anhand der Informationen der spanischen Erhebung uber die erwerbstatige Bevolkerung (Encuesta de Poblacion Activa, EPA) angewandt. Prognosen Shift-Share Szenarien Erhebung uber erwerbstatige Bevolkerung (EPA) Mayor M., Lopez A. J. y Perez R. (2007) Prediccion del empleo regional con modelos shift-share y ARIMA, Regional Studies 41, 543-551. Para poder definir adecuadamente los escenarios de prediccion es necesario analizar las diferentes situaciones economicas y los factores de riesgo. En este articulo destacamos que el modelo shift-share es una herramienta util para definir escenarios, basados en los diferentes componentes que contribuyen a cambiar una determinada variable economica (efectos nacionales, sectoriales y competitivos). Aunque la metodologia que se usa con mas frecuencia se basa en las hipotesis 'constant-shift' y 'constant-share', podemos considerar opciones adicionales que nos llevan a situaciones mas reales. En concreto proponemos una formulacion dinamica shift-share incorporando los cambios en el periodo analizado en la estructura sectorial y en el nivel de la variable considerada. Una vez desarrollada esta nueva opcion, aplicamos este enfoque para definir los escenarios y el empleo regional en Asturias usando la informacion proporcionada por la Encuesta de Poblacion Activa (EPA). Prediccion Shift-share Ejemplos Encuesta de Poblacion Activa (EPA)

Suggested Citation

  • Matias Mayor & Ana Jesus Lopez & Rigoberto Perez, 2007. "Forecasting Regional Employment with Shift-Share and ARIMA Modelling," Regional Studies, Taylor & Francis Journals, vol. 41(4), pages 543-551.
  • Handle: RePEc:taf:regstd:v:41:y:2007:i:4:p:543-551
    DOI: 10.1080/00343400601120205

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Schanne, N. & Wapler, R. & Weyh, A., 2010. "Regional unemployment forecasts with spatial interdependencies," International Journal of Forecasting, Elsevier, vol. 26(4), pages 908-926, October.
    2. Robert Lehmann & Klaus Wohlrabe, 2014. "Regional economic forecasting: state-of-the-art methodology and future challenges," Economics and Business Letters, Oviedo University Press, vol. 3(4), pages 218-231.
    3. Federico Lampis, 2016. "Forecasting the sectoral GVA of a small Spanish region," Economics and Business Letters, Oviedo University Press, vol. 5(2), pages 38-44.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:regstd:v:41:y:2007:i:4:p:543-551. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.