IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

The statistical properties of the innovations in multivariate ARCH processes in high dimensions

Listed author(s):
  • Gilles Zumbach
Registered author(s):

    The long memory linear ARCH process is extended to a multivariate universe, where the natural cross-product structure of the covariance is generalized by adding two bi-linear terms with their respective parameter. The residuals of the linear ARCH process are computed using historical data and the (inverse square root of the) covariance matrix. Simple measures of quality assessing the independence and unit magnitude of the residual distributions are proposed. The salient statistical properties of the computed residuals are studied for three data sets of size 54, 55 and 330. Both new terms introduced in the covariance help to produce uncorrelated residuals, but the mean residual magnitudes are much larger than one. The large magnitudes of the residuals are due to the exponential decay of the covariance eigenvalues, corresponding to directions with very small fluctuations in the historical sample. Because the postulated properties of the innovations cannot be obtained regardless of the parameter values, subsequent inferences reach a fundamental limitation in a large multivariate universe.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Taylor & Francis Journals in its journal Quantitative Finance.

    Volume (Year): 13 (2013)
    Issue (Month): 1 (January)
    Pages: 29-44

    in new window

    Handle: RePEc:taf:quantf:v:13:y:2013:i:1:p:29-44
    DOI: 10.1080/14697688.2011.589399
    Contact details of provider: Web page:

    Order Information: Web:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:13:y:2013:i:1:p:29-44. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.