IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v12y2012i3p437-449.html
   My bibliography  Save this article

A comparison of statistical tests for the adequacy of a neural network regression model

Author

Listed:
  • Nikos S. Thomaidis
  • Georgios D. Dounias

Abstract

An integral part of econometric practice is to test the adequacy of model specifications. If a model is adequately specified, it should not leave interesting features of the data-generating process in the errors. Despite the common tradition, the importance of diagnostic checking as a safeguard against mis-specification has only recently been recognized by neural network (NN) practitioners, possibly because this type of semi-parametric methodology was not originally designed for economic and financial applications. The purpose of this paper is to compare a number of analytical statistical testing procedures suitable to diagnostic checking on a neural network regression model. We present the standard Lagrange multiplier (LM) testing framework designed under the assumption of identically distributed disturbances and also examine two modifications that are robust to heteroskedasticity in errors. One modification also gives the researcher an opportunity to incorporate information concerning the volatility structure of the data-generating process in the testing procedure. By means of a Monte Carlo simulation, we investigate the performance of these tests under GARCH-type heteroskedasticity in errors and various distributional assumptions. The results show that although the primary concern of the researcher may be to design a regression model that accurately captures relations in the mean of the conditional distribution, developing a good approximation of the underlying volatility structure generally increases the efficiency of tests in detecting non-adequacy of a NN model. † http://fidelity.fme.ae gean.gr/decision

Suggested Citation

  • Nikos S. Thomaidis & Georgios D. Dounias, 2012. "A comparison of statistical tests for the adequacy of a neural network regression model," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 437-449, October.
  • Handle: RePEc:taf:quantf:v:12:y:2012:i:3:p:437-449 DOI: 10.1080/14697680903426573
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697680903426573
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2008. "Heterogeneity, Market Mechanisms, and Asset Price Dynamics," Research Paper Series 231, Quantitative Finance Research Centre, University of Technology, Sydney.
    2. Lee, Bong-Soo & Ingram, Beth Fisher, 1991. "Simulation estimation of time-series models," Journal of Econometrics, Elsevier, vol. 47(2-3), pages 197-205, February.
    3. Duffie, Darrell & Singleton, Kenneth J, 1993. "Simulated Moments Estimation of Markov Models of Asset Prices," Econometrica, Econometric Society, vol. 61(4), pages 929-952, July.
    4. J. Barkley Rosser Jr. (ed.), 2009. "Handbook of Research on Complexity," Books, Edward Elgar Publishing, number 3625, September.
    5. Chiarella, Carl & He, Xue-Zhong & Hommes, Cars, 2006. "A dynamic analysis of moving average rules," Journal of Economic Dynamics and Control, Elsevier, pages 1729-1753.
    6. Westerhoff, Frank H. & Dieci, Roberto, 2006. "The effectiveness of Keynes-Tobin transaction taxes when heterogeneous agents can trade in different markets: A behavioral finance approach," Journal of Economic Dynamics and Control, Elsevier, vol. 30(2), pages 293-322, February.
    7. Franke, Reiner, 2009. "Applying the method of simulated moments to estimate a small agent-based asset pricing model," Journal of Empirical Finance, Elsevier, pages 804-815.
    8. Brock, William A. & Hommes, Cars H., 1998. "Heterogeneous beliefs and routes to chaos in a simple asset pricing model," Journal of Economic Dynamics and Control, Elsevier, vol. 22(8-9), pages 1235-1274, August.
    9. Lukas Menkhoff & Mark P. Taylor, 2007. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Journal of Economic Literature, American Economic Association, pages 936-972.
    10. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    11. Beja, Avraham & Goldman, M Barry, 1980. " On the Dynamic Behavior of Prices in Disequilibrium," Journal of Finance, American Finance Association, vol. 35(2), pages 235-248, May.
    12. Franke, Reiner, 2010. "On the specification of noise in two agent-based asset pricing models," Journal of Economic Dynamics and Control, Elsevier, vol. 34(6), pages 1140-1152, June.
    13. Manzan, Sebastiano & Westerhoff, Frank, 2005. "Representativeness of news and exchange rate dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 29(4), pages 677-689, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Golmohammadi, Davood, 2016. "Predicting hospital admissions to reduce emergency department boarding," International Journal of Production Economics, Elsevier, vol. 182(C), pages 535-544.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:3:p:437-449. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.