IDEAS home Printed from
   My bibliography  Save this article

A comparison of statistical tests for the adequacy of a neural network regression model


  • Nikos S. Thomaidis
  • Georgios D. Dounias


An integral part of econometric practice is to test the adequacy of model specifications. If a model is adequately specified, it should not leave interesting features of the data-generating process in the errors. Despite the common tradition, the importance of diagnostic checking as a safeguard against mis-specification has only recently been recognized by neural network (NN) practitioners, possibly because this type of semi-parametric methodology was not originally designed for economic and financial applications. The purpose of this paper is to compare a number of analytical statistical testing procedures suitable to diagnostic checking on a neural network regression model. We present the standard Lagrange multiplier (LM) testing framework designed under the assumption of identically distributed disturbances and also examine two modifications that are robust to heteroskedasticity in errors. One modification also gives the researcher an opportunity to incorporate information concerning the volatility structure of the data-generating process in the testing procedure. By means of a Monte Carlo simulation, we investigate the performance of these tests under GARCH-type heteroskedasticity in errors and various distributional assumptions. The results show that although the primary concern of the researcher may be to design a regression model that accurately captures relations in the mean of the conditional distribution, developing a good approximation of the underlying volatility structure generally increases the efficiency of tests in detecting non-adequacy of a NN model. †

Suggested Citation

  • Nikos S. Thomaidis & Georgios D. Dounias, 2012. "A comparison of statistical tests for the adequacy of a neural network regression model," Quantitative Finance, Taylor & Francis Journals, vol. 12(3), pages 437-449, October.
  • Handle: RePEc:taf:quantf:v:12:y:2012:i:3:p:437-449
    DOI: 10.1080/14697680903426573

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Golmohammadi, Davood, 2016. "Predicting hospital admissions to reduce emergency department boarding," International Journal of Production Economics, Elsevier, vol. 182(C), pages 535-544.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:3:p:437-449. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.