IDEAS home Printed from
   My bibliography  Save this article

Designing optimal routes in a liner shipping problem


  • Kjetil Fagerholt *


A real liner shipping problem of deciding optimal weekly routes for a given fleet of ships is considered and a solution method for solving the problem is proposed. First, all feasible routes for each ship are generated together with the cost and the duration for each route. The routes are given as input to an integer programming (IP) problem. By solving the IP problem, routes for each ship are selected such that total transportation costs are minimized and the demand at each port is satisfied. The total duration for the routes that are selected for a given ship must not exceed one week. The real liner shipping problem is solved together with four randomly generated test problems. The computational results show that proposed solution method is suitable for designing optimal routes in several liner shipping problems.

Suggested Citation

  • Kjetil Fagerholt *, 2004. "Designing optimal routes in a liner shipping problem," Maritime Policy & Management, Taylor & Francis Journals, vol. 31(4), pages 259-268, October.
  • Handle: RePEc:taf:marpmg:v:31:y:2004:i:4:p:259-268
    DOI: 10.1080/0308883042000259819

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. H B Bendall & A F Stent, 2001. "A Scheduling Model for a High Speed Containership Service: A Hub and Spoke Short-Sea Application," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 3(3), pages 262-277, September.
    2. Fagerholt, Kjetil, 2001. "Ship scheduling with soft time windows: An optimisation based approach," European Journal of Operational Research, Elsevier, vol. 131(3), pages 559-571, June.
    3. B. J. Powell & A .N. Perkins, 1997. "Fleet deployment optimization for liner shipping: an integer programming model," Maritime Policy & Management, Taylor & Francis Journals, vol. 24(2), pages 183-192, January.
    4. Leif H. Appelgren, 1969. "A Column Generation Algorithm for a Ship Scheduling Problem," Transportation Science, INFORMS, vol. 3(1), pages 53-68, February.
    5. Moshe Dror & Pierre Trudeau, 1989. "Savings by Split Delivery Routing," Transportation Science, INFORMS, vol. 23(2), pages 141-145, May.
    6. Fagerholt, Kjetil & Lindstad, HÃ¥kon, 2000. "Optimal policies for maintaining a supply service in the Norwegian Sea," Omega, Elsevier, vol. 28(3), pages 269-275, June.
    7. Ronen, David, 1993. "Ship scheduling: The last decade," European Journal of Operational Research, Elsevier, vol. 71(3), pages 325-333, December.
    8. Marielle Christiansen & Kjetil Fagerholt & David Ronen, 2004. "Ship Routing and Scheduling: Status and Perspectives," Transportation Science, INFORMS, vol. 38(1), pages 1-18, February.
    9. Ronen, David, 1983. "Cargo ships routing and scheduling: Survey of models and problems," European Journal of Operational Research, Elsevier, vol. 12(2), pages 119-126, February.
    10. Dan O. Bausch & Gerald G. Brown & David Ronen, 1998. "Scheduling short-term marine transport of bulk products," Maritime Policy & Management, Taylor & Francis Journals, vol. 25(4), pages 335-348, October.
    11. Marielle Christiansen & Kjetil Fagerholt, 2002. "Robust ship scheduling with multiple time windows," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(6), pages 611-625, September.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:marpmg:v:31:y:2004:i:4:p:259-268. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.