IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Heterogeneous skewness in binary choice models: Predicting outcomes in the men's NCAA basketball tournament

Listed author(s):
  • Steven Caudill
  • Norman Godwin

Several authors have recently explored the estimation of binary choice models based on asymmetric error structures. One such family of skewed models is based on the exponential generalized beta type 2 (EGB2). One model in this family is the skewed logit. Recently, McDonald (1996, 2000) extended the work on the EGB2 family of skewed models to permit heterogeneity in the scale parameter. The aim of this paper is to extend the skewed logit model to allow for heterogeneity in the skewness parameter. By this we mean that, in the model developed, here the skewness parameter is permitted to vary from observation to observation by making it a function of exogenous variables. To demonstrate the usefulness of our model, we examine the issue of the predictive ability of sports seedings. We find that we are able to obtain better probability predictions using the skewed logit model with heterogeneous skewness than can be obtained with logit, probit, or skewed logit.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Journal of Applied Statistics.

Volume (Year): 29 (2002)
Issue (Month): 7 ()
Pages: 991-1001

in new window

Handle: RePEc:taf:japsta:v:29:y:2002:i:7:p:991-1001
DOI: 10.1080/0266476022000006694
Contact details of provider: Web page:

Order Information: Web:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Barniv, Ran & McDonald, James B, 1999. "Review of Categorical Models for Classification Issues in Accounting and Finance," Review of Quantitative Finance and Accounting, Springer, vol. 13(1), pages 39-62, July.
  2. Clarke, Darral G. & McDonald, James B., 1992. "Generalized bankruptcy models applied to predicting consumer credit behavior," Journal of Economics and Business, Elsevier, vol. 44(1), pages 47-62, February.
  3. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters,in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665 National Bureau of Economic Research, Inc.
  4. Boulier, Bryan L. & Stekler, H. O., 1999. "Are sports seedings good predictors?: an evaluation," International Journal of Forecasting, Elsevier, vol. 15(1), pages 83-91, February.
  5. McDonald, James B., 1996. "An application and comparison of some flexible parametric and semi-parametric qualitative response models," Economics Letters, Elsevier, vol. 53(2), pages 145-152, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:29:y:2002:i:7:p:991-1001. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.