IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v53y1996i2p145-152.html
   My bibliography  Save this article

An application and comparison of some flexible parametric and semi-parametric qualitative response models

Author

Listed:
  • McDonald, James B.

Abstract

No abstract is available for this item.

Suggested Citation

  • McDonald, James B., 1996. "An application and comparison of some flexible parametric and semi-parametric qualitative response models," Economics Letters, Elsevier, vol. 53(2), pages 145-152, November.
  • Handle: RePEc:eee:ecolet:v:53:y:1996:i:2:p:145-152
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165-1765(96)00907-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hausman, Jerry A & Wise, David A, 1978. "A Conditional Probit Model for Qualitative Choice: Discrete Decisions Recognizing Interdependence and Heterogeneous Preferences," Econometrica, Econometric Society, vol. 46(2), pages 403-426, March.
    2. Hardle, Wolfgang & Manski, Charles F., 1993. "Nonparametric and semiparametric approaches to discrete response analysis," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 1-2, July.
    3. Amemiya, Takeshi, 1981. "Qualitative Response Models: A Survey," Journal of Economic Literature, American Economic Association, vol. 19(4), pages 1483-1536, December.
    4. Manski, Charles F., 1985. "Semiparametric analysis of discrete response : Asymptotic properties of the maximum score estimator," Journal of Econometrics, Elsevier, vol. 27(3), pages 313-333, March.
    5. McDonald, James B. & Xu, Yexiao J., 1995. "A generalization of the beta distribution with applications," Journal of Econometrics, Elsevier, vol. 69(2), pages 427-428, October.
    6. Horowitz, Joel L., 1993. "Semiparametric estimation of a work-trip mode choice model," Journal of Econometrics, Elsevier, vol. 58(1-2), pages 49-70, July.
    7. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steven Caudill & Norman Godwin, 2002. "Heterogeneous skewness in binary choice models: Predicting outcomes in the men's NCAA basketball tournament," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(7), pages 991-1001.
    2. Choi, Pilsun & Nam, Kiseok, 2008. "Asymmetric and leptokurtic distribution for heteroscedastic asset returns: The SU-normal distribution," Journal of Empirical Finance, Elsevier, vol. 15(1), pages 41-63, January.
    3. D. F. Benoit & D. Van Den Poel, 2010. "Binary quantile regression: A Bayesian approach based on the asymmetric Laplace density," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/662, Ghent University, Faculty of Economics and Business Administration.
    4. James Hansen & James McDonald & Panayiotis Theodossiou & Brad Larsen, 2010. "Partially Adaptive Econometric Methods For Regression and Classification," Computational Economics, Springer;Society for Computational Economics, vol. 36(2), pages 153-169, August.
    5. Steven Caudill & James Long, 2010. "Do former athletes make better managers? Evidence from a partially adaptive grouped-data regression model," Empirical Economics, Springer, vol. 39(1), pages 275-290, August.
    6. Katherine G. Yewell & Steven B. Caudill & Franklin G. Mixon, Jr., 2014. "Referee Bias and Stoppage Time in Major League Soccer: A Partially Adaptive Approach," Econometrics, MDPI, vol. 2(1), pages 1-19, February.
    7. Steven Caudill, 2012. "A partially adaptive estimator for the censored regression model based on a mixture of normal distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(2), pages 121-137, June.
    8. Jing-Yi Lai, 2012. "An empirical study of the impact of skewness and kurtosis on hedging decisions," Quantitative Finance, Taylor & Francis Journals, vol. 12(12), pages 1827-1837, December.
    9. Florios, Kostas & Skouras, Spyros, 2008. "Exact computation of max weighted score estimators," Journal of Econometrics, Elsevier, vol. 146(1), pages 86-91, September.
    10. Lai, Jing-yi, 2012. "Shock-dependent conditional skewness in international aggregate stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 72-83.
    11. Steven B. Caudill & James E. Long & Franklin G. Mixon, 2012. "Female athletic participation and income: evidence from a latent class model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(3), pages 477-488, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matzkin, Rosa L., 2012. "Identification in nonparametric limited dependent variable models with simultaneity and unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 166(1), pages 106-115.
    2. William Greene, 2007. "Discrete Choice Modeling," Working Papers 07-6, New York University, Leonard N. Stern School of Business, Department of Economics.
    3. Horowitz, Joel & Keane, Michael & Bolduc, Denis & Divakar, Suresh & Geweke, John & Gonul, Fosun & Hajivassiliou, Vassilis & Koppelman, Frank & Matzkin, Rosa & Rossi, Peter & Ruud, Paul, 1994. "Advances in Random Utility Models," MPRA Paper 53026, University Library of Munich, Germany.
    4. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    5. Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
    6. Mayer, Walter J. & Dorsey, Robert E., 1998. "Maximum score estimation of disequilibrium models and the role of anticipatory price-setting," Journal of Econometrics, Elsevier, vol. 87(1), pages 1-24, August.
    7. William H. Greene & David A. Hensher, 2008. "Modeling Ordered Choices: A Primer and Recent Developments," Working Papers 08-26, New York University, Leonard N. Stern School of Business, Department of Economics.
    8. Pietro Tebaldi & Alexander Torgovitsky & Hanbin Yang, 2023. "Nonparametric Estimates of Demand in the California Health Insurance Exchange," Econometrica, Econometric Society, vol. 91(1), pages 107-146, January.
    9. Heinz König & Michael Lechner, 1994. "Some Recent Developments in Microeconometrics - A Survey," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 130(III), pages 299-331, September.
    10. Matzkin, Rosa L., 2019. "Constructive identification in some nonseparable discrete choice models," Journal of Econometrics, Elsevier, vol. 211(1), pages 83-103.
    11. Horowitz, Joel L., 2004. "Semiparametric models," Papers 2004,17, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    12. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    13. D. F. Benoit & D. Van Den Poel, 2010. "Binary quantile regression: A Bayesian approach based on the asymmetric Laplace density," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 10/662, Ghent University, Faculty of Economics and Business Administration.
    14. Ichimura, Hidehiko & Thompson, T. Scott, 1998. "Maximum likelihood estimation of a binary choice model with random coefficients of unknown distribution," Journal of Econometrics, Elsevier, vol. 86(2), pages 269-295, June.
    15. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    16. Erik Stam & Roy Thurik & Peter van der Zwan, 2010. "Entrepreneurial exit in real and imagined markets," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 19(4), pages 1109-1139, August.
    17. Haaijer, Marinus E., 1996. "Predictions in conjoint choice experiments : the x-factor probit model," Research Report 96B22, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    18. Delgado, Miguel A. & Rodriguez-Poo, Juan M. & Wolf, Michael, 2001. "Subsampling inference in cube root asymptotics with an application to Manski's maximum score estimator," Economics Letters, Elsevier, vol. 73(2), pages 241-250, November.
    19. Park, Byeong U. & Simar, Léopold & Zelenyuk, Valentin, 2017. "Nonparametric estimation of dynamic discrete choice models for time series data," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 97-120.
    20. Taisuke Otsu & Myung Hwan Seo, 2014. "Asymptotics for maximum score method under general conditions," STICERD - Econometrics Paper Series 571, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:53:y:1996:i:2:p:145-152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.