IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i4p1123-1148.html
   My bibliography  Save this article

Selecting Portfolios of Water Supply and Demand Management Strategies Under Uncertainty—Contrasting Economic Optimisation and ‘Robust Decision Making’ Approaches

Author

Listed:
  • Evgenii Matrosov
  • Silvia Padula
  • Julien Harou

Abstract

Planning appropriate portfolios of new water supplies and demand management measures requires considering a wide array of options and their interactions over a largely unknown future. Various modelling-assisted approaches are available to help this planning process. This paper applies two such frameworks to the UK’s Thames water resource system and compares their methods and outputs: how they consider uncertainty, how they represent supply and demand management options, and what plans each recommends. The first method is the current England and Wales industry standard: annual least-cost capacity expansion optimisation over a 25 to 30 year time horizon considering capital, operating (fixed and variable), social and environmental costs. The second approach uses stochastic simulation and regret analysis to select a preferred alternative, then statistical cluster analysis to identify causes of system failure enabling further plan improvement. When applied iteratively with system planners this second approach is referred to as Robust Decision Making (RDM). The economic optimisation approach considers all plausible combinations of supply and conservation schemes and recommends the least-cost schedule of their implementation. Our RDM application considers a smaller number of options but makes a more detailed assessment of the effect of uncertainty (supply, demand and energy price uncertainty were considered) on multiple criteria of system performance. The simulation-based approach also enables more realistic interaction amongst supply and demand management schemes. Both approaches recommended different plans which we explain by discussing the benefits and limitations of each. Joint application is recommended to produce least-cost plans that are robust considering multiple criteria of performance across a wide range of futures. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Evgenii Matrosov & Silvia Padula & Julien Harou, 2013. "Selecting Portfolios of Water Supply and Demand Management Strategies Under Uncertainty—Contrasting Economic Optimisation and ‘Robust Decision Making’ Approaches," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(4), pages 1123-1148, March.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:4:p:1123-1148
    DOI: 10.1007/s11269-012-0118-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0118-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0118-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ronald C. Griffin, 2006. "Water Resource Economics: The Analysis of Scarcity, Policies, and Projects," MIT Press Books, The MIT Press, edition 1, volume 1, number 026207267x, December.
    2. B. Luo & I. Maqsood & G. Huang, 2007. "Planning water resources systems with interval stochastic dynamic programming," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(6), pages 997-1014, June.
    3. Robert J. Lempert & David G. Groves & Steven W. Popper & Steve C. Bankes, 2006. "A General, Analytic Method for Generating Robust Strategies and Narrative Scenarios," Management Science, INFORMS, vol. 52(4), pages 514-528, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pongkijvorasin, Sittidaj & Burnett, Kimberly & Wada, Christopher, 2018. "Joint Management of an Interconnected Coastal Aquifer and Invasive Tree," Ecological Economics, Elsevier, vol. 146(C), pages 125-135.
    2. Corentin Girard & Jean-Daniel Rinaudo & Manuel Pulido-Velazquez & Yvan Caballero, 2015. "An interdisciplinary modelling framework for selecting adaptation measures at the river basin scale in a global change scenario," Post-Print hal-01183833, HAL.
    3. Claudio Arena & Marcella Cannarozzo & Mario Mazzola, 2014. "Screening Investments to Reduce the Risk of Hydrologic Failures in the Headwork System Supplying Apulia (Italy) – Role of Economic Evaluation and Operation Hydrology," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(5), pages 1251-1275, March.
    4. Hurford, A.P. & Harou, J.J. & Bonzanigo, L. & Ray, P.A. & Karki, P. & Bharati, L. & Chinnasamy, P., 2020. "Efficient and robust hydropower system design under uncertainty - A demonstration in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Corentin Girard & Jean-Daniel Rinaudo & Manuel Pulido-Velazquez, 2015. "Index-Based Cost-Effectiveness Analysis vs. Least-Cost River Basin Optimization Model: Comparison in the Selection of a Programme of Measures at the River Basin Scale," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(11), pages 4129-4155, September.
    6. Dittrich, Ruth & Wreford, Anita & Moran, Dominic, 2016. "A survey of decision-making approaches for climate change adaptation: Are robust methods the way forward?," Ecological Economics, Elsevier, vol. 122(C), pages 79-89.
    7. Livia Rasche & Uwe A. Schneider & Martha Bolívar Lobato & Ruth Sos Del Diego & Tobias Stacke, 2018. "Benefits of Coordinated Water Resource System Planning in the Cauca-Magdalena River Basin," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-27, January.
    8. Kwakkel, J.H. & Cunningham, S.C., 2016. "Improving scenario discovery by bagging random boxes," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 124-134.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Zhineng & Chen, Yazhen & Yao, Liming & Wei, Changting & Li, Chaozhi, 2016. "Optimal allocation of regional water resources: From a perspective of equity–efficiency tradeoff," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 102-113.
    2. Jeßberger Christoph & Sindram Maximilian & Zimmer Markus, 2011. "Global Warming Induced Water-Cycle Changes and Industrial Production – A Scenario Analysis for the Upper Danube River Basin," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(3), pages 415-439, June.
    3. David Aubin & Frédéric Varone, 2013. "Getting Access to Water: Property Rights or Public Policy Strategies?," Environment and Planning C, , vol. 31(1), pages 154-167, February.
    4. Baker, Erin & Bosetti, Valentina & Salo, Ahti, 2016. "Finding Common Ground when Experts Disagree: Belief Dominance over Portfolios of Alternatives," MITP: Mitigation, Innovation and Transformation Pathways 243147, Fondazione Eni Enrico Mattei (FEEM).
    5. Quentin Perrier, 2017. "The French Nuclear Bet," Working Papers 2017.18, Fondazione Eni Enrico Mattei.
    6. Arun S. Malik & Stephen C. Smith, 2012. "Adaptation To Climate Change In Low-Income Countries: Lessons From Current Research And Needs From Future Research," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-22.
    7. Xueguo Xu & Chen Xu & Wenxin Zhang, 2022. "Research on the Destruction Resistance of Giant Urban Rail Transit Network from the Perspective of Vulnerability," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    8. Roy, Bernard, 2010. "Robustness in operational research and decision aiding: A multi-faceted issue," European Journal of Operational Research, Elsevier, vol. 200(3), pages 629-638, February.
    9. Frederick Chou & Hao-Chih Lee & William Yeh, 2013. "Effectiveness and Efficiency of Scheduling Regional Water Resources Projects," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(3), pages 665-693, February.
    10. Lempert Robert J., 2014. "Embedding (some) benefit-cost concepts into decision support processes with deep uncertainty," Journal of Benefit-Cost Analysis, De Gruyter, vol. 5(3), pages 487-514, December.
    11. Thomas D. Pol & Ekko C. Ierland & Silke Gabbert, 2017. "Economic analysis of adaptive strategies for flood risk management under climate change," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(2), pages 267-285, February.
    12. Stephane Hallegatte & Mook Bangalore & Laura Bonzanigo & Marianne Fay & Tamaro Kane & Ulf Narloch & Julie Rozenberg & David Treguer & Adrien Vogt-Schilb, 2016. "Shock Waves," World Bank Publications - Books, The World Bank Group, number 22787, December.
    13. Franck Lecocq & Alain Nadaï & Christophe Cassen, 2022. "Getting models and modellers to inform deep decarbonization strategies," Climate Policy, Taylor & Francis Journals, vol. 22(6), pages 695-710, July.
    14. Erik Pruyt & Jan H. Kwakkel, 2014. "Radicalization under deep uncertainty: a multi-model exploration of activism, extremism, and terrorism," System Dynamics Review, System Dynamics Society, vol. 30(1-2), pages 1-28, January.
    15. Elmar Kriegler & Brian-C O'Neill & Stéphane Hallegatte & Tom Kram & Richard-H Moss & Robert Lempert & Thomas J Wilbanks, 2010. "Socio-economic Scenario Development for Climate Change Analysis," CIRED Working Papers hal-00866437, HAL.
    16. Student, Jillian & Kramer, Mark R. & Steinmann, Patrick, 2020. "Simulating emerging coastal tourism vulnerabilities: an agent-based modelling approach," Annals of Tourism Research, Elsevier, vol. 85(C).
    17. Wada, Christopher A. & Pongkijvorasin, Sittidaj & Burnett, Kimberly M., 2020. "Mountain-to-sea ecological-resource management: Forested watersheds, coastal aquifers, and groundwater dependent ecosystems," Resource and Energy Economics, Elsevier, vol. 59(C).
    18. Hurford, A.P. & Harou, J.J. & Bonzanigo, L. & Ray, P.A. & Karki, P. & Bharati, L. & Chinnasamy, P., 2020. "Efficient and robust hydropower system design under uncertainty - A demonstration in Nepal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    19. Vladimir A. Masch, 2017. "¡°Shifting the Paradigm¡± in Superintelligence," Review of Economics & Finance, Better Advances Press, Canada, vol. 8, pages 17-30, May.
    20. Julie E. Shortridge & Benjamin F. Zaitchik, 2018. "Characterizing climate change risks by linking robust decision frameworks and uncertain probabilistic projections," Climatic Change, Springer, vol. 151(3), pages 525-539, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:4:p:1123-1148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.