IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v66y2025i4d10.1007_s00362-025-01708-8.html
   My bibliography  Save this article

Local linear smoothing for regression surfaces on the simplex using Dirichlet kernels

Author

Listed:
  • Christian Genest

    (McGill University)

  • Frédéric Ouimet

    (McGill University)

Abstract

This paper introduces a local linear smoother for regression surfaces on the simplex. The estimator solves a least-squares regression problem weighted by a locally adaptive Dirichlet kernel, ensuring good boundary properties. Asymptotic results for the bias, variance, mean squared error, and mean integrated squared error are derived, generalizing the univariate results of Chen (Ann Inst Stat Math, 54(2):312–323, 2002). A simulation study shows that the proposed local linear estimator with Dirichlet kernel outperforms its only direct competitor in the literature, the Nadaraya–Watson estimator with Dirichlet kernel due to Bouzebda et al. (AIMS Math 9(9):26195–26282, 2024).

Suggested Citation

  • Christian Genest & Frédéric Ouimet, 2025. "Local linear smoothing for regression surfaces on the simplex using Dirichlet kernels," Statistical Papers, Springer, vol. 66(4), pages 1-28, June.
  • Handle: RePEc:spr:stpapr:v:66:y:2025:i:4:d:10.1007_s00362-025-01708-8
    DOI: 10.1007/s00362-025-01708-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-025-01708-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-025-01708-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song Chen, 2002. "Local Linear Smoothers Using Asymmetric Kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(2), pages 312-323, June.
    2. Eduardo Fé, 2014. "Estimation and inference in regression discontinuity designs with asymmetric kernels," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(11), pages 2406-2417, November.
    3. Bertin, Karine & Genest, Christian & Klutchnikoff, Nicolas & Ouimet, Frédéric, 2023. "Minimax properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    4. Jianhong Shi & Weixing Song, 2016. "Asymptotic results in gamma kernel regression," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(12), pages 3489-3509, June.
    5. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    6. Axel Tenbusch, 1994. "Two-dimensional Bernstein polynomial density estimators," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 41(1), pages 233-253, December.
    7. Bruce M. Brown & Song Xi Chen, 1999. "Beta‐Bernstein Smoothing for Regression Curves with Compact Support," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(1), pages 47-59, March.
    8. J. Aitchison & I. J. Lauder, 1985. "Kernel Density Estimation for Compositional Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(2), pages 129-137, June.
    9. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    10. Funke, Benedikt & Hirukawa, Masayuki, 2021. "Bias correction for local linear regression estimation using asymmetric kernels via the skewing method," Econometrics and Statistics, Elsevier, vol. 20(C), pages 109-130.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    2. Bertin, Karine & Genest, Christian & Klutchnikoff, Nicolas & Ouimet, Frédéric, 2023. "Minimax properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    3. Benedikt Funke & Masayuki Hirukawa, 2025. "On uniform consistency of nonparametric estimators smoothed by the gamma kernel," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(3), pages 459-489, June.
    4. Frédéric Ouimet, 2021. "General Formulas for the Central and Non-Central Moments of the Multinomial Distribution," Stats, MDPI, vol. 4(1), pages 1-10, January.
    5. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    6. Salvatore D. Tomarchio & Antonio Punzo & Johannes T. Ferreira & Andriette Bekker, 2025. "A New Look at the Dirichlet Distribution: Robustness, Clustering, and Both Together," Journal of Classification, Springer;The Classification Society, vol. 42(1), pages 31-53, March.
    7. Pierre Lafaye de Micheaux & Frédéric Ouimet, 2021. "A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions," Mathematics, MDPI, vol. 9(20), pages 1-35, October.
    8. Nikolay Gospodinov & Masayuki Hirukawa, 2008. "Time Series Nonparametric Regression Using Asymmetric Kernels with an Application to Estimation of Scalar Diffusion Processes," CIRJE F-Series CIRJE-F-573, CIRJE, Faculty of Economics, University of Tokyo.
    9. Bouezmarni, Taoufik & Rombouts, Jeroen V.K. & Taamouti, Abderrahim, 2010. "Asymptotic properties of the Bernstein density copula estimator for [alpha]-mixing data," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 1-10, January.
    10. Alexandre Leblanc, 2010. "A bias-reduced approach to density estimation using Bernstein polynomials," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(4), pages 459-475.
    11. Bouezmarni Taoufik & Ghouch El & Taamouti Abderrahim, 2013. "Bernstein estimator for unbounded copula densities," Statistics & Risk Modeling, De Gruyter, vol. 30(4), pages 343-360, December.
    12. Ouimet, Frédéric, 2022. "A symmetric matrix-variate normal local approximation for the Wishart distribution and some applications," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    13. Masayuki Hirukawa & Irina Murtazashvili & Artem Prokhorov, 2022. "Uniform convergence rates for nonparametric estimators smoothed by the beta kernel," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1353-1382, September.
    14. Alexandre Leblanc, 2012. "On estimating distribution functions using Bernstein polynomials," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 919-943, October.
    15. Eduardo Fé, 2010. "An application of local linear regression with asymmetric kernels to regression discontinuity designs," Economics Discussion Paper Series 1016, Economics, The University of Manchester.
    16. Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
    17. Fourrier-Nicolaï Edwin & Lubrano Michel, 2024. "Bayesian inference for non-anonymous growth incidence curves using Bernstein polynomials: an application to academic wage dynamics," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 319-336, April.
    18. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    19. Zhao, Yanyun & Ausín Olivera, María Concepción & Wiper, Michael Peter, 2013. "Bayesian multivariate Bernstein polynomial density estimation," DES - Working Papers. Statistics and Econometrics. WS ws131211, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Lina Wang & Dawei Lu, 2023. "Application of Bernstein Polynomials on Estimating a Distribution and Density Function in a Triangular Array," Methodology and Computing in Applied Probability, Springer, vol. 25(2), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:66:y:2025:i:4:d:10.1007_s00362-025-01708-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.