IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v77y2025i3d10.1007_s10463-024-00923-8.html
   My bibliography  Save this article

On uniform consistency of nonparametric estimators smoothed by the gamma kernel

Author

Listed:
  • Benedikt Funke

    (TH Köln - University of Applied Sciences)

  • Masayuki Hirukawa

    (Ryukoku University)

Abstract

This paper documents a set of uniform consistency results with rates for nonparametric density and regression estimators smoothed by the gamma kernel having support on the nonnegative real line. It is known that this kernel can well calibrate the shapes of ‘cost’ distributions that are characterized by a sharp peak in the vicinity of the origin and a long right tail. In this paper, weak and strong uniform consistency and corresponding convergence rates of gamma kernel estimators are explored in a multivariate framework. Our analysis is built on compact sets expanding to the nonnegative orthant and general sequences of smoothing parameters. The results are useful for asymptotic analysis of two-step semiparametric estimation using a first-step kernel estimate as a plug-in.

Suggested Citation

  • Benedikt Funke & Masayuki Hirukawa, 2025. "On uniform consistency of nonparametric estimators smoothed by the gamma kernel," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 77(3), pages 459-489, June.
  • Handle: RePEc:spr:aistmt:v:77:y:2025:i:3:d:10.1007_s10463-024-00923-8
    DOI: 10.1007/s10463-024-00923-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10463-024-00923-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10463-024-00923-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kristensen, Dennis, 2009. "Uniform Convergence Rates Of Kernel Estimators With Heterogeneous Dependent Data," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1433-1445, October.
    2. Benedikt Funke & Masayuki Hirukawa, 2024. "Density derivative estimation using asymmetric kernels," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 36(4), pages 994-1017, October.
    3. Rilstone, Paul, 1996. "Nonparametric Estimation of Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(2), pages 299-313, May.
    4. Masayuki Hirukawa & Irina Murtazashvili & Artem Prokhorov, 2022. "Uniform convergence rates for nonparametric estimators smoothed by the beta kernel," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1353-1382, September.
    5. BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen VK, 2010. "Nonparametric density estimation for multivariate bounded data," LIDAM Reprints CORE 2301, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Newey, Whitney K., 1994. "Kernel Estimation of Partial Means and a General Variance Estimator," Econometric Theory, Cambridge University Press, vol. 10(2), pages 1-21, June.
    7. Song Chen, 2000. "Probability Density Function Estimation Using Gamma Kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(3), pages 471-480, September.
    8. Song Chen, 2002. "Local Linear Smoothers Using Asymmetric Kernels," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(2), pages 312-323, June.
    9. Hansen, Bruce E., 2008. "Uniform Convergence Rates For Kernel Estimation With Dependent Data," Econometric Theory, Cambridge University Press, vol. 24(3), pages 726-748, June.
    10. Bertin, Karine & Genest, Christian & Klutchnikoff, Nicolas & Ouimet, Frédéric, 2023. "Minimax properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    11. Ouimet, Frédéric, 2021. "Asymptotic properties of Bernstein estimators on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 185(C).
    12. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    13. Ouimet, Frédéric, 2022. "A symmetric matrix-variate normal local approximation for the Wishart distribution and some applications," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    14. Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
    15. Horrace, William C., 2005. "Some results on the multivariate truncated normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 94(1), pages 209-221, May.
    16. Masayuki Hirukawa & Irina Murtazashvili & Artem Prokhorov, 2023. "Yet another look at the omitted variable bias," Econometric Reviews, Taylor & Francis Journals, vol. 42(1), pages 1-27, January.
    17. Funke, Benedikt & Kawka, Rafael, 2015. "Nonparametric density estimation for multivariate bounded data using two non-negative multiplicative bias correction methods," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 148-162.
    18. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    19. Das, Sourish & Dey, Dipak K., 2010. "On Bayesian inference for generalized multivariate gamma distribution," Statistics & Probability Letters, Elsevier, vol. 80(19-20), pages 1492-1499, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masayuki Hirukawa & Irina Murtazashvili & Artem Prokhorov, 2022. "Uniform convergence rates for nonparametric estimators smoothed by the beta kernel," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(3), pages 1353-1382, September.
    2. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    3. Sobom M. Somé & Célestin C. Kokonendji & Smail Adjabi & Naushad A. Mamode Khan & Said Beddek, 2024. "Multiple combined gamma kernel estimations for nonnegative data with Bayesian adaptive bandwidths," Computational Statistics, Springer, vol. 39(2), pages 905-937, April.
    4. Bertin, Karine & Genest, Christian & Klutchnikoff, Nicolas & Ouimet, Frédéric, 2023. "Minimax properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    5. Ouimet, Frédéric, 2022. "A symmetric matrix-variate normal local approximation for the Wishart distribution and some applications," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Pierre Lafaye de Micheaux & Frédéric Ouimet, 2021. "A Study of Seven Asymmetric Kernels for the Estimation of Cumulative Distribution Functions," Mathematics, MDPI, vol. 9(20), pages 1-35, October.
    7. Funke, Benedikt & Hirukawa, Masayuki, 2021. "Bias correction for local linear regression estimation using asymmetric kernels via the skewing method," Econometrics and Statistics, Elsevier, vol. 20(C), pages 109-130.
    8. Kakizawa, Yoshihide, 2022. "Multivariate elliptical-based Birnbaum–Saunders kernel density estimation for nonnegative data," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    9. Hagmann, M. & Scaillet, O., 2007. "Local multiplicative bias correction for asymmetric kernel density estimators," Journal of Econometrics, Elsevier, vol. 141(1), pages 213-249, November.
    10. Fernandes, Marcelo & Grammig, Joachim, 2005. "Nonparametric specification tests for conditional duration models," Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
    11. Bouezmarni, Taoufik & Rombouts, Jeroen V.K., 2010. "Nonparametric density estimation for positive time series," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 245-261, February.
    12. Malec, Peter & Schienle, Melanie, 2014. "Nonparametric kernel density estimation near the boundary," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 57-76.
    13. Funke, Benedikt & Kawka, Rafael, 2015. "Nonparametric density estimation for multivariate bounded data using two non-negative multiplicative bias correction methods," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 148-162.
    14. Debopam Bhattacharya & Shin Kanaya & Margaret Stevens, 2017. "Are University Admissions Academically Fair?," The Review of Economics and Statistics, MIT Press, vol. 99(3), pages 449-464, July.
    15. Charpentier, Arthur & Flachaire, Emmanuel, 2015. "Log-Transform Kernel Density Estimation Of Income Distribution," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 141-159, Mars-Juin.
    16. Ruijun Bu & Jihyun Kim & Bin Wang, 2020. "Uniform and Lp Convergences of Nonparametric Estimation for Diffusion Models," Working Papers 202021, University of Liverpool, Department of Economics.
    17. Funke, Benedikt & Hirukawa, Masayuki, 2019. "Nonparametric estimation and testing on discontinuity of positive supported densities: a kernel truncation approach," Econometrics and Statistics, Elsevier, vol. 9(C), pages 156-170.
    18. Gaku Igarashi, 2018. "Multivariate Density Estimation Using a Multivariate Weighted Log-Normal Kernel," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 247-266, August.
    19. Li, Cong & Liang, Zhongwen, 2015. "Asymptotics for nonparametric and semiparametric fixed effects panel models," Journal of Econometrics, Elsevier, vol. 185(2), pages 420-434.
    20. Kristensen, Dennis, 2010. "Pseudo-maximum likelihood estimation in two classes of semiparametric diffusion models," Journal of Econometrics, Elsevier, vol. 156(2), pages 239-259, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:77:y:2025:i:3:d:10.1007_s10463-024-00923-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.