IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v22y2019i2d10.1007_s11203-018-9190-z.html
   My bibliography  Save this article

Two-step wavelet-based estimation for Gaussian mixed fractional processes

Author

Listed:
  • Patrice Abry

    (Université de Lyon, Université Claude Bernard)

  • Gustavo Didier

    (Tulane University)

  • Hui Li

    (Tulane University)

Abstract

A Gaussian mixed fractional process $$\{Y(t)\}_{t \in {\mathbb {R}}} = \{PX(t)\}_{t \in {\mathbb {R}}}$$ { Y ( t ) } t ∈ R = { P X ( t ) } t ∈ R is a multivariate stochastic process obtained by pre-multiplying a vector of independent, Gaussian fractional process entries X by a nonsingular matrix P. It is interpreted that Y is observable, while X is a hidden process occurring in an (unknown) system of coordinates P. Mixed processes naturally arise as approximations to solutions of physically relevant classes of multivariate fractional stochastic differential equations under aggregation. We propose a semiparametric two-step wavelet-based method for estimating both the demixing matrix $$P^{-1}$$ P - 1 and the memory parameters of X. The asymptotic normality of the estimator is established both in continuous and discrete time. Monte Carlo experiments show that the estimator is accurate over finite samples, while being very computationally efficient. As an application, we model a bivariate time series of annual tree ring width measurements.

Suggested Citation

  • Patrice Abry & Gustavo Didier & Hui Li, 2019. "Two-step wavelet-based estimation for Gaussian mixed fractional processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 157-185, July.
  • Handle: RePEc:spr:sistpr:v:22:y:2019:i:2:d:10.1007_s11203-018-9190-z
    DOI: 10.1007/s11203-018-9190-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-018-9190-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11203-018-9190-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laha, R. G. & Rohatgi, V. K., 1981. "Operator self similar stochastic processes in," Stochastic Processes and their Applications, Elsevier, vol. 12(1), pages 73-84, October.
    2. Henghsiu Tsai & K. S. Chan, 2005. "Quasi‐Maximum Likelihood Estimation for a Class of Continuous‐time Long‐memory Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(5), pages 691-713, September.
    3. Hosoya, Yuzo, 1996. "The quasi-likelihood approach to statistical inference on multiple time-series with long-range dependence," Journal of Econometrics, Elsevier, vol. 73(1), pages 217-236, July.
    4. Robinson, Peter M. & Yajima, Yoshihiro, 2002. "Determination of cointegrating rank in fractional systems," Journal of Econometrics, Elsevier, vol. 106(2), pages 217-241, February.
    5. Becker-Kern, Peter & Pap, Gyula, 2008. "Parameter estimation of selfsimilarity exponents," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 117-140, January.
    6. Maejima, Makoto & Mason, J. David, 1994. "Operator-self-similar stable processes," Stochastic Processes and their Applications, Elsevier, vol. 54(1), pages 139-163, November.
    7. Bardet, Jean-Marc & Tudor, Ciprian, 2014. "Asymptotic behavior of the Whittle estimator for the increments of a Rosenblatt process," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 1-16.
    8. E. Moulines & F. Roueff & M. S. Taqqu, 2007. "On the Spectral Density of the Wavelet Coefficients of Long‐Memory Time Series with Application to the Log‐Regression Estimation of the Memory Parameter," Journal of Time Series Analysis, Wiley Blackwell, vol. 28(2), pages 155-187, March.
    9. Caragea, Petruta C. & Smith, Richard L., 2007. "Asymptotic properties of computationally efficient alternative estimators for a class of multivariate normal models," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1417-1440, August.
    10. Morten Ørregaard Nielsen & Per Frederiksen, 2011. "Fully modified narrow‐band least squares estimation of weak fractional cointegration," Econometrics Journal, Royal Economic Society, vol. 14, pages 77-120, February.
    11. Breuer, Péter & Major, Péter, 1983. "Central limit theorems for non-linear functionals of Gaussian fields," Journal of Multivariate Analysis, Elsevier, vol. 13(3), pages 425-441, September.
    12. D Marinucci & Peter M Robinson, 2001. "Semiparametric Fractional Cointegration Analysis," STICERD - Econometrics Paper Series 420, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    13. Martin Lysy & Natesh S. Pillai & David B. Hill & M. Gregory Forest & John W. R. Mellnik & Paula A. Vasquez & Scott A. McKinley, 2016. "Model Comparison and Assessment for Single Particle Tracking in Biological Fluids," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1413-1426, October.
    14. Biermé, Hermine & Meerschaert, Mark M. & Scheffler, Hans-Peter, 2007. "Operator scaling stable random fields," Stochastic Processes and their Applications, Elsevier, vol. 117(3), pages 312-332, March.
    15. Marinucci, D. & Robinson, P. M., 2000. "Weak convergence of multivariate fractional processes," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 103-120, March.
    16. Puplinskaitė, Donata & Surgailis, Donatas, 2015. "Scaling transition for long-range dependent Gaussian random fields," Stochastic Processes and their Applications, Elsevier, vol. 125(6), pages 2256-2271.
    17. Jean-François Coeurjolly, 2001. "Estimating the Parameters of a Fractional Brownian Motion by Discrete Variations of its Sample Paths," Statistical Inference for Stochastic Processes, Springer, vol. 4(2), pages 199-227, May.
    18. Hualde, J. & Robinson, P.M., 2010. "Semiparametric inference in multivariate fractionally cointegrated systems," Journal of Econometrics, Elsevier, vol. 157(2), pages 492-511, August.
    19. Rebecca J. Sela & Clifford M. Hurvich, 2012. "The averaged periodogram estimator for a power law in coherency," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(2), pages 340-363, March.
    20. Shimotsu, Katsumi, 2012. "Exact local Whittle estimation of fractionally cointegrated systems," Journal of Econometrics, Elsevier, vol. 169(2), pages 266-278.
    21. Henghsiu Tsai & K. S. Chan, 2005. "Maximum likelihood estimation of linear continuous time long memory processes with discrete time data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 703-716, November.
    22. Guo, Hongwen & Lim, Chae Young & Meerschaert, Mark M., 2009. "Local Whittle estimator for anisotropic random fields," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 993-1028, May.
    23. Pipiras,Vladas & Taqqu,Murad S., 2017. "Long-Range Dependence and Self-Similarity," Cambridge Books, Cambridge University Press, number 9781107039469, September.
    24. Gustavo Didier & Scott A. McKinley & David B. Hill & John Fricks, 2012. "Statistical challenges in microrheology," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(5), pages 724-743, September.
    25. Marinucci, D & Robinson, Peter M., 2001. "Semiparametric fractional cointegration analysis," LSE Research Online Documents on Economics 2269, London School of Economics and Political Science, LSE Library.
    26. Li, Yuqiang & Xiao, Yimin, 2011. "Multivariate operator-self-similar random fields," Stochastic Processes and their Applications, Elsevier, vol. 121(6), pages 1178-1200, June.
    27. Marinucci, D. & Robinson, P. M., 2001. "Semiparametric fractional cointegration analysis," Journal of Econometrics, Elsevier, vol. 105(1), pages 225-247, November.
    28. Hualde, Javier, 2013. "A simple test for the equality of integration orders," Economics Letters, Elsevier, vol. 119(3), pages 233-237.
    29. Sophie Achard & Irène Gannaz, 2016. "Multivariate Wavelet Whittle Estimation in Long-range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 476-512, July.
    30. Shimotsu, Katsumi, 2007. "Gaussian semiparametric estimation of multivariate fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 137(2), pages 277-310, April.
    31. Didier, Gustavo & Meerschaert, Mark M. & Pipiras, Vladas, 2018. "Domain and range symmetries of operator fractional Brownian fields," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 39-78.
    32. Bardet, J.-M. & Tudor, C.A., 2010. "A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2331-2362, December.
    33. Ignacio N. Lobato, 1997. "Consistency Of The Averaged Cross‐Periodogram In Long Memory Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 18(2), pages 137-155, March.
    34. Frank S. Nielsen, 2011. "Local Whittle estimation of multi‐variate fractionally integrated processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(3), pages 317-335, May.
    35. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrice Abry & B. Cooper Boniece & Gustavo Didier & Herwig Wendt, 2023. "Wavelet eigenvalue regression in high dimensions," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 1-32, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abry, Patrice & Didier, Gustavo, 2018. "Wavelet eigenvalue regression for n-variate operator fractional Brownian motion," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 75-104.
    2. Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
    3. Gilles de Truchis & Elena Ivona Dumitrescu, 2019. "Narrow-band Weighted Nonlinear Least Squares Estimation of Unbalanced Cointegration Systems," EconomiX Working Papers 2019-14, University of Paris Nanterre, EconomiX.
    4. Christian Leschinski & Michelle Voges & Philipp Sibbertsen, 2021. "A comparison of semiparametric tests for fractional cointegration," Statistical Papers, Springer, vol. 62(4), pages 1997-2030, August.
    5. Gilles de Truchis & Elena Ivona Dumitrescu & Florent Dubois, 2019. "Local Whittle Analysis of Stationary Unbalanced Fractional Cointegration Systems," EconomiX Working Papers 2019-15, University of Paris Nanterre, EconomiX.
    6. Gilles de Truchis & Elena Ivona Dumitrescu, 2019. "Narrow-band Weighted Nonlinear Least Squares Estimation of Unbalanced Cointegration Systems," Working Papers hal-04141871, HAL.
    7. Marina Balboa & Paulo M. M. Rodrigues & Antonio Rubia & A. M. Robert Taylor, 2021. "Multivariate fractional integration tests allowing for conditional heteroskedasticity with an application to return volatility and trading volume," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 544-565, August.
    8. Gilles de Truchis & Florent Dubois & Elena Ivona Dumitrescu, 2019. "Local Whittle Analysis of Stationary Unbalanced Fractional Cointegration Systems," Working Papers hal-04141882, HAL.
    9. Stefanos Kechagias & Vladas Pipiras, 2015. "Definitions And Representations Of Multivariate Long-Range Dependent Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(1), pages 1-25, January.
    10. Morten Ø. Nielsen & Per Houmann Frederiksen, 2008. "Fully Modified Narrow-band Least Squares Estimation Of Stationary Fractional Cointegration," Working Paper 1171, Economics Department, Queen's University.
    11. Hualde, Javier, 2006. "Unbalanced Cointegration," Econometric Theory, Cambridge University Press, vol. 22(5), pages 765-814, October.
    12. Gannaz, Irène, 2023. "Asymptotic normality of wavelet covariances and multivariate wavelet Whittle estimators," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 485-534.
    13. Becker, Janis & Leschinski, Christian & Sibbertsen, Philipp, 2019. "Robust Multivariate Local Whittle Estimation and Spurious Fractional Cointegration," Hannover Economic Papers (HEP) dp-660, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    14. Didier, Gustavo & Meerschaert, Mark M. & Pipiras, Vladas, 2018. "Domain and range symmetries of operator fractional Brownian fields," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 39-78.
    15. Guglielmo Caporale & Luis Gil-Alana, 2014. "Fractional integration and cointegration in US financial time series data," Empirical Economics, Springer, vol. 47(4), pages 1389-1410, December.
    16. Hualde, J. & Robinson, P.M., 2010. "Semiparametric inference in multivariate fractionally cointegrated systems," Journal of Econometrics, Elsevier, vol. 157(2), pages 492-511, August.
    17. Margherita Gerolimetto & Isabella Procidano, 2008. "A test for fractional cointegration using the sieve bootstrap," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 17(3), pages 373-391, July.
    18. Adebola, Solarin Sakiru & Gil-Alana, Luis A. & Madigu, Godfrey, 2019. "Gold prices and the cryptocurrencies: Evidence of convergence and cointegration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1227-1236.
    19. Hualde, Javier, 2013. "A simple test for the equality of integration orders," Economics Letters, Elsevier, vol. 119(3), pages 233-237.
    20. Katarzyna Lasak, 2008. "Maximum likelihood estimation of fractionally cointegrated systems," CREATES Research Papers 2008-53, Department of Economics and Business Economics, Aarhus University.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:22:y:2019:i:2:d:10.1007_s11203-018-9190-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.