IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v99y2008i1p117-140.html
   My bibliography  Save this article

Parameter estimation of selfsimilarity exponents

Author

Listed:
  • Becker-Kern, Peter
  • Pap, Gyula

Abstract

The characteristic feature of operator selfsimilar stochastic processes is that a linear rescaling in time is equal in the sense of distributions to a linear operator rescaling in space, which in turn is characterized by the selfsimilarity exponent. The growth behaviour of such processes in any radial direction is determined by the real parts of the eigenvalues of the selfsimilarity exponent. We extend an estimation method of Meerschaert and Scheffler [M.M. Meerschaert, H.-P. Scheffler, Moment estimator for random vectors with heavy tails, J. Multivariate Anal. 71 (1999) 145-159, M.M. Meerschaert, H.-P. Scheffler, Portfolio modeling with heavy tailed random vectors, in: S.T. Rachev (Ed.), Handbook of Heavy Tailed Distributions in Finance, Elsevier Science B.V., Amsterdam, 2003, pp. 595-640] to be applicable for estimating the real parts of the eigenvalues of the selfsimilarity exponent and corresponding spectral directions given by the eigenvectors. More generally, the results are applied to operator semi-selfsimilar processes, which obey a weaker scaling property, and to certain Ornstein-Uhlenbeck type processes connected to operator semi-selfsimilar processes via Lamperti's transformation.

Suggested Citation

  • Becker-Kern, Peter & Pap, Gyula, 2008. "Parameter estimation of selfsimilarity exponents," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 117-140, January.
  • Handle: RePEc:eee:jmvana:v:99:y:2008:i:1:p:117-140
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(07)00057-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maejima, Makoto & Sato, Ken-iti & Watanabe, Toshiro, 2000. "Distributions of selfsimilar and semi-selfsimilar processes with independent increments," Statistics & Probability Letters, Elsevier, vol. 47(4), pages 395-401, May.
    2. Becker-Kern, Peter, 2004. "Random integral representation of operator-semi-self-similar processes with independent increments," Stochastic Processes and their Applications, Elsevier, vol. 109(2), pages 327-344, February.
    3. Yamazato, Makoto, 1983. "Absolute continuity of operator-self-decomposable distributions on Rd," Journal of Multivariate Analysis, Elsevier, vol. 13(4), pages 550-560, December.
    4. Jeanblanc, M. & Pitman, J. & Yor, M., 0. "Self-similar processes with independent increments associated with Lévy and Bessel processes," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 223-231, July.
    5. Meerschaert, Mark M. & Scheffler, Hans-Peter, 1999. "Moment Estimator for Random Vectors with Heavy Tails," Journal of Multivariate Analysis, Elsevier, vol. 71(1), pages 145-159, October.
    6. Wolfe, Stephen James, 1983. "Continuity properties of decomposable probability measures on euclidean spaces," Journal of Multivariate Analysis, Elsevier, vol. 13(4), pages 534-538, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abry, Patrice & Didier, Gustavo, 2018. "Wavelet eigenvalue regression for n-variate operator fractional Brownian motion," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 75-104.
    2. Patrice Abry & B. Cooper Boniece & Gustavo Didier & Herwig Wendt, 2023. "Wavelet eigenvalue regression in high dimensions," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 1-32, April.
    3. Gustavo Didier & Vladas Pipiras, 2012. "Exponents, Symmetry Groups and Classification of Operator Fractional Brownian Motions," Journal of Theoretical Probability, Springer, vol. 25(2), pages 353-395, June.
    4. Patrice Abry & Gustavo Didier & Hui Li, 2019. "Two-step wavelet-based estimation for Gaussian mixed fractional processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(2), pages 157-185, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Becker-Kern, Peter, 2004. "Random integral representation of operator-semi-self-similar processes with independent increments," Stochastic Processes and their Applications, Elsevier, vol. 109(2), pages 327-344, February.
    2. Bhatti, T. & Kern, P., 2017. "An integral representation of dilatively stable processes with independent increments," Stochastic Processes and their Applications, Elsevier, vol. 127(1), pages 209-227.
    3. Toshiro Watanabe, 2002. "Shift Self-Similar Additive Random Sequences Associated with Supercritical Branching Processes," Journal of Theoretical Probability, Springer, vol. 15(3), pages 631-665, July.
    4. Toshiro Watanabe, 2000. "Continuity Properties of Distributions with Some Decomposability," Journal of Theoretical Probability, Springer, vol. 13(1), pages 169-191, January.
    5. Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
    6. Tsionas, Mike G., 2016. "Bayesian analysis of multivariate stable distributions using one-dimensional projections," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 185-193.
    7. Valentin Courgeau & Almut E. D. Veraart, 2022. "Likelihood theory for the graph Ornstein-Uhlenbeck process," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 227-260, July.
    8. Colino, Jesús P., 2008. "New stochastic processes to model interest rates : LIBOR additive processes," DES - Working Papers. Statistics and Econometrics. WS ws085316, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Saigo, Tatsuhiko & Tamura, Yozo, 2006. "Operator semi-self-similar processes and their space-scaling matrices," Statistics & Probability Letters, Elsevier, vol. 76(7), pages 675-681, April.
    10. Dilip B. Madan & Wim Schoutens, 2020. "Self‐similarity in long‐horizon returns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1368-1391, October.
    11. Tsionas, Efthymios G., 2012. "Estimating multivariate heavy tails and principal directions easily, with an application to international exchange rates," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 1986-1989.
    12. Patrice Abry & B. Cooper Boniece & Gustavo Didier & Herwig Wendt, 2023. "Wavelet eigenvalue regression in high dimensions," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 1-32, April.
    13. Makoto Maejima & Taisuke Takamune & Yohei Ueda, 2014. "The Dichotomy of Recurrence and Transience of Semi-Lévy Processes," Journal of Theoretical Probability, Springer, vol. 27(3), pages 982-996, September.
    14. Ole E. Barndorff-Nielsen & Makoto Maejima & Ken-iti Sato, 2006. "Infinite Divisibility for Stochastic Processes and Time Change," Journal of Theoretical Probability, Springer, vol. 19(2), pages 411-446, June.
    15. Abry, Patrice & Didier, Gustavo, 2018. "Wavelet eigenvalue regression for n-variate operator fractional Brownian motion," Journal of Multivariate Analysis, Elsevier, vol. 168(C), pages 75-104.
    16. Haijun Li, 2018. "Operator Tail Dependence of Copulas," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 1013-1027, September.
    17. Akita, Koji & Maejima, Makoto, 2002. "On certain self-decomposable self-similar processes with independent increments," Statistics & Probability Letters, Elsevier, vol. 59(1), pages 53-59, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:99:y:2008:i:1:p:117-140. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.