IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v127y2017i1p209-227.html
   My bibliography  Save this article

An integral representation of dilatively stable processes with independent increments

Author

Listed:
  • Bhatti, T.
  • Kern, P.

Abstract

Dilative stability generalizes the property of selfsimilarity for infinitely divisible stochastic processes by introducing an additional scaling in the convolution exponent. Inspired by results of Iglói (2008), we will show how dilatively stable processes with independent increments can be represented by integrals with respect to time-changed Lévy processes. Via a Lamperti-type transformation these representations are shown to be closely connected to translatively stable processes of Ornstein–Uhlenbeck-type, where translative stability generalizes the notion of stationarity. The presented results complement corresponding representations for selfsimilar processes with independent increments known from the literature.

Suggested Citation

  • Bhatti, T. & Kern, P., 2017. "An integral representation of dilatively stable processes with independent increments," Stochastic Processes and their Applications, Elsevier, vol. 127(1), pages 209-227.
  • Handle: RePEc:eee:spapps:v:127:y:2017:i:1:p:209-227
    DOI: 10.1016/j.spa.2016.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414916300813
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2016.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kern, Peter & Wedrich, Lina, 2015. "Dilatively semistable stochastic processes," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 101-108.
    2. Jeanblanc, M. & Pitman, J. & Yor, M., 0. "Self-similar processes with independent increments associated with Lévy and Bessel processes," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 223-231, July.
    3. Es-sebaiy, Khalifa & Ouknine, Youssef, 2008. "How rich is the class of processes which are infinitely divisible with respect to time?," Statistics & Probability Letters, Elsevier, vol. 78(5), pages 537-547, April.
    4. Wolfe, Stephen James, 1982. "On a continuous analogue of the stochastic difference equation Xn=[rho]Xn-1+Bn," Stochastic Processes and their Applications, Elsevier, vol. 12(3), pages 301-312, May.
    5. Becker-Kern, Peter, 2004. "Random integral representation of operator-semi-self-similar processes with independent increments," Stochastic Processes and their Applications, Elsevier, vol. 109(2), pages 327-344, February.
    6. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2014. "Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1011-1035.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Becker-Kern, Peter & Pap, Gyula, 2008. "Parameter estimation of selfsimilarity exponents," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 117-140, January.
    2. Taufer, Emanuele & Leonenko, Nikolai, 2009. "Simulation of Lvy-driven Ornstein-Uhlenbeck processes with given marginal distribution," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2427-2437, April.
    3. Maejima, Makoto & Ueda, Yohei, 2010. "[alpha]-selfdecomposable distributions and related Ornstein-Uhlenbeck type processes," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2363-2389, December.
    4. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2015. "Joint aggregation of random-coefficient AR(1) processes with common innovations," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 73-82.
    5. Doukhan, Paul & Jakubowski, Adam & Lopes, Silvia R.C. & Surgailis, Donatas, 2019. "Discrete-time trawl processes," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1326-1348.
    6. Mai Jan-Frederik, 2014. "A note on the Galambos copula and its associated Bernstein function," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-8, March.
    7. Pilipauskaitė, Vytautė & Surgailis, Donatas, 2017. "Scaling transition for nonlinear random fields with long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2751-2779.
    8. Kern, Peter & Wedrich, Lina, 2015. "Dilatively semistable stochastic processes," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 101-108.
    9. Saigo, Tatsuhiko & Tamura, Yozo, 2006. "Operator semi-self-similar processes and their space-scaling matrices," Statistics & Probability Letters, Elsevier, vol. 76(7), pages 675-681, April.
    10. Dilip B. Madan & Wim Schoutens, 2020. "Self‐similarity in long‐horizon returns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1368-1391, October.
    11. Wang, Xiaolong & Feng, Jing & Liu, Qi & Li, Yongge & Xu, Yong, 2022. "Neural network-based parameter estimation of stochastic differential equations driven by Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    12. Surgailis, Donatas, 2020. "Scaling transition and edge effects for negatively dependent linear random fields on Z2," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7518-7546.
    13. Nedényi, Fanni & Pap, Gyula, 2016. "Iterated scaling limits for aggregation of random coefficient AR(1) and INAR(1) processes," Statistics & Probability Letters, Elsevier, vol. 118(C), pages 16-23.
    14. Becker-Kern, Peter, 2004. "Random integral representation of operator-semi-self-similar processes with independent increments," Stochastic Processes and their Applications, Elsevier, vol. 109(2), pages 327-344, February.
    15. Grahovac, Danijel & Leonenko, Nikolai N. & Taqqu, Murad S., 2019. "Limit theorems, scaling of moments and intermittency for integrated finite variance supOU processes," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5113-5150.
    16. Borovkov, Konstantin & Novikov, Alexander, 2008. "On exit times of Lévy-driven Ornstein-Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1517-1525, September.
    17. Puplinskaitė, Donata & Surgailis, Donatas, 2015. "Scaling transition for long-range dependent Gaussian random fields," Stochastic Processes and their Applications, Elsevier, vol. 125(6), pages 2256-2271.
    18. Makoto Maejima & Taisuke Takamune & Yohei Ueda, 2014. "The Dichotomy of Recurrence and Transience of Semi-Lévy Processes," Journal of Theoretical Probability, Springer, vol. 27(3), pages 982-996, September.
    19. Zheng, Jing & Lin, Zhengyan & Tong, Changqing, 2009. "The Hausdorff dimension of the range for the Markov processes of Ornstein–Uhlenbeck type," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2008-2013.
    20. Brockwell, Peter J. & Lindner, Alexander, 2015. "Prediction of Lévy-driven CARMA processes," Journal of Econometrics, Elsevier, vol. 189(2), pages 263-271.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:127:y:2017:i:1:p:209-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.