IDEAS home Printed from https://ideas.repec.org/a/ect/emjrnl/v14y2011i1p77-120.html
   My bibliography  Save this article

Fully modified narrow‐band least squares estimation of weak fractional cointegration

Author

Listed:
  • Morten Ørregaard Nielsen
  • Per Frederiksen

Abstract

We consider estimation of the cointegrating relation in the weak fractional cointegration model, where the strength of the cointegrating relation (difference in memory parameters) is less than one-half. A special case is the stationary fractional cointegration model, which has found important application recently, especially in financial economics. Previous research on this model has considered a semiparametric narrow-band least squares (NBLS) estimator in the frequency domain, but in the stationary case its asymptotic distribution has been derived only under a condition of non-coherence between regressors and errors at the zero frequency. We show that in the absence of this condition, the NBLS estimator is asymptotically biased, and also that the bias can be consistently estimated. Consequently, we introduce a fully modified NBLS estimator which eliminates the bias, and indeed enjoys a faster rate of convergence than NBLS in general. We also show that local Whittle estimation of the integration order of the errors can be conducted consistently based on NBLS residuals, but the estimator has the same asymptotic distribution as if the errors were observed only under the condition of non-coherence. Furthermore, compared to much previous research, the development of the asymptotic distribution theory is based on a different spectral density representation, which is relevant for multivariate fractionally integrated processes, and the use of this representation is shown to result in lower asymptotic bias and variance of the narrow-band estimators. We present simulation evidence and a series of empirical illustrations to demonstrate the feasibility and empirical relevance of our methodology.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Morten Ørregaard Nielsen & Per Frederiksen, 2011. "Fully modified narrow‐band least squares estimation of weak fractional cointegration," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 77-120, February.
  • Handle: RePEc:ect:emjrnl:v:14:y:2011:i:1:p:77-120
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1368-423X.2010.00323.x
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Berger, David & Chaboud, Alain & Hjalmarsson, Erik, 2009. "What drives volatility persistence in the foreign exchange market?," Journal of Financial Economics, Elsevier, vol. 94(2), pages 192-213, November.
    2. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous-time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323.
    3. Robinson, P.M., 2005. "The distance between rival nonstationary fractional processes," Journal of Econometrics, Elsevier, vol. 128(2), pages 283-300, October.
    4. D. Marinucci & P. M. Robinson, 2001. "Finite sample improvements in statistical inference with I(1) processes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 431-444.
    5. Morten Orregaard Nielsen, 2005. "Semiparametric Estimation in Time-Series Regression with Long-Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(2), pages 279-304, March.
    6. Federico M. Bandi & Benoit Perron, 2006. "Long Memory and the Relation Between Implied and Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(4), pages 636-670.
    7. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," Review of Economic Studies, Oxford University Press, vol. 57(1), pages 99-125.
    8. Robinson, Peter M. & Yajima, Yoshihiro, 2002. "Determination of cointegrating rank in fractional systems," Journal of Econometrics, Elsevier, vol. 106(2), pages 217-241, February.
    9. Robinson, P.M. & Henry, M., 1999. "Long And Short Memory Conditional Heteroskedasticity In Estimating The Memory Parameter Of Levels," Econometric Theory, Cambridge University Press, vol. 15(03), pages 299-336, June.
    10. Lobato, I. & Robinson, P. M., 1996. "Averaged periodogram estimation of long memory," Journal of Econometrics, Elsevier, vol. 73(1), pages 303-324, July.
    11. Lobato, Ignacio N., 1999. "A semiparametric two-step estimator in a multivariate long memory model," Journal of Econometrics, Elsevier, vol. 90(1), pages 129-153, May.
    12. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    13. Marinucci, D & Robinson, Peter M, 2001. "Finite sample improvement in statistical inference with I(1) processes," LSE Research Online Documents on Economics 58079, London School of Economics and Political Science, LSE Library.
    14. Donald W. K. Andrews & Yixiao Sun, 2004. "Adaptive Local Polynomial Whittle Estimation of Long-range Dependence," Econometrica, Econometric Society, vol. 72(2), pages 569-614, March.
    15. Ignacio N. Lobato & Peter M. Robinson, 1998. "A Nonparametric Test for I(0)," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 475-495.
    16. Shimotsu, Katsumi, 2007. "Gaussian semiparametric estimation of multivariate fractionally integrated processes," Journal of Econometrics, Elsevier, vol. 137(2), pages 277-310, April.
    17. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
    18. Chen, Willa W. & Hurvich, Clifford M., 2003. "Estimating fractional cointegration in the presence of polynomial trends," Journal of Econometrics, Elsevier, vol. 117(1), pages 95-121, November.
    19. D Marinucci & Peter M Robinson, 2001. "Finite Sample Improvement in Statistical Inference with I(1) Processes," STICERD - Econometrics Paper Series 422, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    20. Hualde, J. & Robinson, P.M., 2010. "Semiparametric inference in multivariate fractionally cointegrated systems," Journal of Econometrics, Elsevier, vol. 157(2), pages 492-511, August.
    21. Marinucci, D. & Robinson, Peter, 2001. "Finite sample improvements in statistical inference with I(1) processes," LSE Research Online Documents on Economics 2161, London School of Economics and Political Science, LSE Library.
    22. Christensen, Bent Jesper & Nielsen, Morten Orregaard, 2006. "Asymptotic normality of narrow-band least squares in the stationary fractional cointegration model and volatility forecasting," Journal of Econometrics, Elsevier, vol. 133(1), pages 343-371, July.
    23. Robinson, Peter M., 1997. "Large-sample inference for nonparametric regression with dependent errors," LSE Research Online Documents on Economics 302, London School of Economics and Political Science, LSE Library.
    24. Carlos Velasco, 2003. "Gaussian Semi-parametric Estimation of Fractional Cointegration," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(3), pages 345-378, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guglielmo Caporale & Luis Gil-Alana, 2014. "Fractional integration and cointegration in US financial time series data," Empirical Economics, Springer, vol. 47(4), pages 1389-1410, December.
    2. Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018. "A multivariate test against spurious long memory," Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
    3. Marcel Aloy & Gilles De Truchis, 2012. "Estimation and Testing for Fractional Cointegration," Working Papers halshs-00793206, HAL.
    4. Hualde, Javier, 2014. "Estimation of long-run parameters in unbalanced cointegration," Journal of Econometrics, Elsevier, vol. 178(2), pages 761-778.
    5. de Truchis, Gilles, 2013. "Approximate Whittle analysis of fractional cointegration and the stock market synchronization issue," Economic Modelling, Elsevier, vol. 34(C), pages 98-105.
    6. Marcel Aloy & Gilles Truchis, 2016. "Optimal Estimation Strategies for Bivariate Fractional Cointegration Systems and the Co-persistence Analysis of Stock Market Realized Volatilities," Computational Economics, Springer;Society for Computational Economics, vol. 48(1), pages 83-104, June.
    7. Baruník, Jozef & Hlínková, Michaela, 2016. "Revisiting the long memory dynamics of the implied–realized volatility relationship: New evidence from the wavelet regression," Economic Modelling, Elsevier, vol. 54(C), pages 503-514.
    8. Marcel Aloy & Gilles De Truchis, 2013. "Optimal Estimation Strategies for Bivariate Fractional Cointegration Systems," Working Papers halshs-00879522, HAL.
    9. Shimotsu, Katsumi, 2012. "Exact local Whittle estimation of fractionally cointegrated systems," Journal of Econometrics, Elsevier, vol. 169(2), pages 266-278.
    10. repec:spr:empeco:v:54:y:2018:i:2:d:10.1007_s00181-016-1223-0 is not listed on IDEAS
    11. Stefanos Kechagias & Vladas Pipiras, 2015. "Definitions And Representations Of Multivariate Long-Range Dependent Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(1), pages 1-25, January.
    12. Barunik, Jozef & Barunikova, Michaela, 2015. "Revisiting the long memory dynamics of implied-realized volatility relation: A new evidence from wavelet band spectrum regression," FinMaP-Working Papers 43, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    13. Sizova, Natalia, 2014. "A frequency-domain alternative to long-horizon regressions with application to return predictability," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 261-272.
    14. de Truchis, Gilles & Keddad, Benjamin, 2013. "Southeast Asian monetary integration: New evidences from fractional cointegration of real exchange rates," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 394-412.
    15. Christensen, Bent Jesper & Varneskov, Rasmus Tangsgaard, 2017. "Medium band least squares estimation of fractional cointegration in the presence of low-frequency contamination," Journal of Econometrics, Elsevier, vol. 197(2), pages 218-244.
    16. Hualde Javier & Iacone Fabrizio, 2012. "First Stage Estimation of Fractional Cointegration," Journal of Time Series Econometrics, De Gruyter, vol. 4(1), pages 1-32, May.
    17. Javier Hualde & Fabrizio Iacone, 2015. "Small-b and Fixed-b Asymptotics for Weighted Covariance Estimation in Fractional Cointegration," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(4), pages 528-540, July.
    18. Guglielmo Maria Caporale & Luis A. Gil‐Alana & James C. Orlando, 2016. "Linkages Between the US and European Stock Markets: A Fractional Cointegration Approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 21(2), pages 143-153, April.
    19. Guglielmo Maria Caporale & Luis Alberiko Gil-Alana & Robert Mudida, 2015. "Testing the Marshall–Lerner Condition in Kenya," South African Journal of Economics, Economic Society of South Africa, vol. 83(2), pages 253-268, June.
    20. Niels Haldrup & Robinson Kruse, 2014. "Discriminating between fractional integration and spurious long memory," CREATES Research Papers 2014-19, Department of Economics and Business Economics, Aarhus University.
    21. Do, Hung Xuan & Brooks, Robert Darren & Treepongkaruna, Sirimon, 2013. "Generalized impulse response analysis in a fractionally integrated vector autoregressive model," Economics Letters, Elsevier, vol. 118(3), pages 462-465.
    22. Jozef Barunik & Michaela Barunikova, 2012. "Revisiting the fractional cointegrating dynamics of implied-realized volatility relation with wavelet band spectrum regression," Papers 1208.4831, arXiv.org, revised Feb 2013.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:14:y:2011:i:1:p:77-120. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/resssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.