IDEAS home Printed from https://ideas.repec.org/a/spr/sistpr/v21y2018i2d10.1007_s11203-018-9172-1.html
   My bibliography  Save this article

Optimal dimension reduction for high-dimensional and functional time series

Author

Listed:
  • Marc Hallin

    () (Université libre de Bruxelles
    Université libre de Bruxelles)

  • Siegfried Hörmann

    (Université libre de Bruxelles
    Université libre de Bruxelles
    Graz University of Technology)

  • Marco Lippi

    (Einaudi Institute for Economics and Finance)

Abstract

Abstract Dimension reduction techniques are at the core of the statistical analysis of high-dimensional and functional observations. Whether the data are vector- or function-valued, principal component techniques, in this context, play a central role. The success of principal components in the dimension reduction problem is explained by the fact that, for any $$K\le p$$ K ≤ p , the K first coefficients in the expansion of a p-dimensional random vector $$\mathbf{X}$$ X in terms of its principal components is providing the best linear K-dimensional summary of $$\mathbf X$$ X in the mean square sense. The same property holds true for a random function and its functional principal component expansion. This optimality feature, however, no longer holds true in a time series context: principal components and functional principal components, when the observations are serially dependent, are losing their optimal dimension reduction property to the so-called dynamic principal components introduced by Brillinger in 1981 in the vector case and, in the functional case, their functional extension proposed by Hörmann, Kidziński and Hallin in 2015.

Suggested Citation

  • Marc Hallin & Siegfried Hörmann & Marco Lippi, 2018. "Optimal dimension reduction for high-dimensional and functional time series," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 385-398, July.
  • Handle: RePEc:spr:sistpr:v:21:y:2018:i:2:d:10.1007_s11203-018-9172-1
    DOI: 10.1007/s11203-018-9172-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11203-018-9172-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    2. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(06), pages 1113-1141, December.
    3. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017. "Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis," Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.
    4. Hallin, Marc & Lippi, Marco, 2013. "Factor models in high-dimensional time series—A time-domain approach," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2678-2695.
    5. Siegfried Hörmann & Łukasz Kidziński & Marc Hallin, 2015. "Dynamic functional principal components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 319-348, March.
    6. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2015. "Dynamic factor models with infinite-dimensional factor spaces: One-sided representations," Journal of Econometrics, Elsevier, vol. 185(2), pages 359-371.
    7. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    8. Forni, Mario & Lippi, Marco, 2011. "The general dynamic factor model: One-sided representation results," Journal of Econometrics, Elsevier, vol. 163(1), pages 23-28, July.
    9. repec:taf:jnlasa:v:111:y:2016:i:515:p:1121-1131 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sistpr:v:21:y:2018:i:2:d:10.1007_s11203-018-9172-1. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Andrew Huffard) The email address of this maintainer does not seem to be valid anymore. Please ask Andrew Huffard to update the entry or send us the correct email address. General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.