IDEAS home Printed from https://ideas.repec.org/a/spr/series/v14y2023i3d10.1007_s13209-023-00286-y.html
   My bibliography  Save this article

New results on asymptotic properties of likelihood estimators with persistent data for small and large T

Author

Listed:
  • Artūras Juodis

    (University of Amsterdam
    Tinbergen Institute)

  • Vasilis Sarafidis

    (Brunel University London
    BI Norwegian Business School)

Abstract

This paper revisits the panel autoregressive model, with a primary emphasis on the unit-root case. We study a class of misspecified Random effects Maximum Likelihood (mRML) estimators when T is either fixed or large, and N tends to infinity. We show that in the unit-root case, for any fixed value of T, the log-likelihood function of the mRML estimator has a single mode at unity as $$N\rightarrow \infty $$ N → ∞ . Furthermore, the Hessian matrix of the corresponding log-likelihood function is non-singular, unless the scaled variance of the initial condition is exactly zero. As a result, mRML is consistent and asymptotically normally distributed as N tends to infinity. In the large-T setup, it is shown that mRML is asymptotically equivalent to the bias-corrected FE estimator of Hahn and Kuersteiner (Econometrica 70(4):1639–1657, 2002). Moreover, under certain conditions, its Hessian matrix remains non-singular.

Suggested Citation

  • Artūras Juodis & Vasilis Sarafidis, 2023. "New results on asymptotic properties of likelihood estimators with persistent data for small and large T," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 14(3), pages 435-461, December.
  • Handle: RePEc:spr:series:v:14:y:2023:i:3:d:10.1007_s13209-023-00286-y
    DOI: 10.1007/s13209-023-00286-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13209-023-00286-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s13209-023-00286-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jushan Bai, 2013. "Fixed‐Effects Dynamic Panel Models, a Factor Analytical Method," Econometrica, Econometric Society, vol. 81(1), pages 285-314, January.
    2. Binder, Michael & Hsiao, Cheng & Pesaran, M. Hashem, 2005. "Estimation And Inference In Short Panel Vector Autoregressions With Unit Roots And Cointegration," Econometric Theory, Cambridge University Press, vol. 21(4), pages 795-837, August.
    3. Hsiao, Cheng & Hashem Pesaran, M. & Kamil Tahmiscioglu, A., 2002. "Maximum likelihood estimation of fixed effects dynamic panel data models covering short time periods," Journal of Econometrics, Elsevier, vol. 109(1), pages 107-150, July.
    4. Bun, Maurice J.G. & Carree, Martin A., 2005. "Bias-Corrected Estimation in Dynamic Panel Data Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 200-210, April.
    5. Alvarez, Javier & Arellano, Manuel, 2022. "Robust likelihood estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 21-61.
    6. Botosaru, Irene & Sasaki, Yuya, 2018. "Nonparametric heteroskedasticity in persistent panel processes: An application to earnings dynamics," Journal of Econometrics, Elsevier, vol. 203(2), pages 283-296.
    7. Arellano, Manuel, 2016. "Modelling optimal instrumental variables for dynamic panel data models," Research in Economics, Elsevier, vol. 70(2), pages 238-261.
    8. Juodis, Artūras & Sarafidis, Vasilis, 2022. "An incidental parameters free inference approach for panels with common shocks," Journal of Econometrics, Elsevier, vol. 229(1), pages 19-54.
    9. Moon, Hyungsik Roger & Perron, Benoit & Phillips, Peter C.B., 2007. "Incidental trends and the power of panel unit root tests," Journal of Econometrics, Elsevier, vol. 141(2), pages 416-459, December.
    10. Joakim Westerlund & Milda Norkutė & Ovidijus Stauskas, 2022. "The factor analytical approach in trending near unit root panels," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 501-508, May.
    11. Maddala, G S, 1971. "The Use of Variance Components Models in Pooling Cross Section and Time Series Data," Econometrica, Econometric Society, vol. 39(2), pages 341-358, March.
    12. Hayakawa, Kazuhiko & Pesaran, M. Hashem, 2015. "Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 188(1), pages 111-134.
    13. Javier Alvarez & Manuel Arellano, 2003. "The Time Series and Cross-Section Asymptotics of Dynamic Panel Data Estimators," Econometrica, Econometric Society, vol. 71(4), pages 1121-1159, July.
    14. Nickell, Stephen J, 1981. "Biases in Dynamic Models with Fixed Effects," Econometrica, Econometric Society, vol. 49(6), pages 1417-1426, November.
    15. Kruiniger, Hugo, 2018. "A further look at Modified ML estimation of the panel AR(1) model with fixed effects and arbitrary initial conditions," MPRA Paper 88623, University Library of Munich, Germany.
    16. Artūras Juodis, 2018. "First difference transformation in panel VAR models: Robustness, estimation, and inference," Econometric Reviews, Taylor & Francis Journals, vol. 37(6), pages 650-693, July.
    17. Jinyong Hahn & Guido Kuersteiner, 2002. "Asymptotically Unbiased Inference for a Dynamic Panel Model with Fixed Effects when Both "n" and "T" Are Large," Econometrica, Econometric Society, vol. 70(4), pages 1639-1657, July.
    18. Manuel Arellano & Stéphane Bonhomme, 2009. "Robust Priors in Nonlinear Panel Data Models," Econometrica, Econometric Society, vol. 77(2), pages 489-536, March.
    19. Joakim Westerlund, 2016. "Pooled Panel Unit Root Tests and the Effect of Past Initialization," Econometric Reviews, Taylor & Francis Journals, vol. 35(3), pages 396-427, March.
    20. Manuel Arellano & Richard Blundell & Stéphane Bonhomme, 2017. "Earnings and Consumption Dynamics: A Nonlinear Panel Data Framework," Econometrica, Econometric Society, vol. 85, pages 693-734, May.
    21. Artūras Juodis & Joakim Westerlund, 2019. "Optimal panel unit root testing with covariates," The Econometrics Journal, Royal Economic Society, vol. 22(1), pages 57-72.
    22. Kruiniger, Hugo, 2013. "Quasi ML estimation of the panel AR(1) model with arbitrary initial conditions," Journal of Econometrics, Elsevier, vol. 173(2), pages 175-188.
    23. Chamberlain, Gary, 1982. "Multivariate regression models for panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 5-46, January.
    24. Gerdie Everaert, 2013. "Orthogonal to backward mean transformation for dynamic panel data models," Econometrics Journal, Royal Economic Society, vol. 16(2), pages 179-221, June.
    25. Norkutė, Milda & Westerlund, Joakim, 2021. "The factor analytical approach in near unit root interactive effects panels," Journal of Econometrics, Elsevier, vol. 221(2), pages 569-590.
    26. Tony Lancaster, 2002. "Orthogonal Parameters and Panel Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(3), pages 647-666.
    27. Enrique Moral-Benito, 2013. "Likelihood-Based Estimation of Dynamic Panels With Predetermined Regressors," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(4), pages 451-472, October.
    28. Hahn, Jinyong & Kuersteiner, Guido & Cho, Myeong Hyeon, 2004. "Asymptotic distribution of misspecified random effects estimator for a dynamic panel model with fixed effects when both n and T are large," Economics Letters, Elsevier, vol. 84(1), pages 117-125, July.
    29. Anderson, T. W. & Hsiao, Cheng, 1982. "Formulation and estimation of dynamic models using panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 47-82, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maurice J.G. Bun & Martin A. Carree & Artūras Juodis, 2017. "On Maximum Likelihood Estimation of Dynamic Panel Data Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(4), pages 463-494, August.
    2. Breitung, Jörg & Kripfganz, Sebastian & Hayakawa, Kazuhiko, 2022. "Bias-corrected method of moments estimators for dynamic panel data models," Econometrics and Statistics, Elsevier, vol. 24(C), pages 116-132.
    3. Artūras Juodis, 2018. "Rank based cointegration testing for dynamic panels with fixed T," Empirical Economics, Springer, vol. 55(2), pages 349-389, September.
    4. Kruiniger, Hugo, 2018. "A further look at Modified ML estimation of the panel AR(1) model with fixed effects and arbitrary initial conditions," MPRA Paper 110375, University Library of Munich, Germany, revised 15 Aug 2021.
    5. Seung C. Ahn & Gareth M. Thomas, 2023. "Likelihood-based inference for dynamic panel data models," Empirical Economics, Springer, vol. 64(6), pages 2859-2909, June.
    6. Alvarez, Javier & Arellano, Manuel, 2022. "Robust likelihood estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 21-61.
    7. Geert Dhaene & Koen Jochmans, 2015. "Split-panel Jackknife Estimation of Fixed-effect Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(3), pages 991-1030.
    8. Bai, Jushan, 2024. "Likelihood approach to dynamic panel models with interactive effects," Journal of Econometrics, Elsevier, vol. 240(1).
    9. repec:hal:spmain:info:hdl:2441/1mc4dip81d9t8r0t57fe1h8lap is not listed on IDEAS
    10. repec:spo:wpmain:info:hdl:2441/1mc4dip81d9t8r0t57fe1h8lap is not listed on IDEAS
    11. In Choi & Sanghyun Jung, 2021. "Cross-sectional quasi-maximum likelihood and bias-corrected pooled least squares estimators for short dynamic panels," Empirical Economics, Springer, vol. 60(1), pages 177-203, January.
    12. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    13. Dhaene, Geert & Jochmans, Koen, 2016. "Likelihood Inference In An Autoregression With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1178-1215, October.
    14. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p2m9mgp8l is not listed on IDEAS
    15. Alexander Chudik & M. Hashem Pesaran, 2017. "A Bias-Corrected Method of Moments Approach to Estimation of Dynamic Short-T Panels," CESifo Working Paper Series 6688, CESifo.
    16. Kripfganz, Sebastian, 2014. "Unconditional Transformed Likelihood Estimation of Time-Space Dynamic Panel Data Models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100604, Verein für Socialpolitik / German Economic Association.
    17. Dhaene, Geert & Jochmans, Koen, 2016. "Likelihood Inference In An Autoregression With Fixed Effects," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1178-1215, October.
    18. Bao, Yong & Yu, Xuewen, 2023. "Indirect inference estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1027-1053.
    19. repec:spo:wpmain:info:hdl:2441/f6h8764enu2lskk9p2m9mgp8l is not listed on IDEAS
    20. Norkutė, Milda & Westerlund, Joakim, 2021. "The factor analytical approach in near unit root interactive effects panels," Journal of Econometrics, Elsevier, vol. 221(2), pages 569-590.
    21. Hayakawa, Kazuhiko & Pesaran, M. Hashem, 2015. "Robust standard errors in transformed likelihood estimation of dynamic panel data models with cross-sectional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 188(1), pages 111-134.
    22. Youssef, Ahmed & Abonazel, Mohamed R., 2015. "Alternative GMM Estimators for First-order Autoregressive Panel Model: An Improving Efficiency Approach," MPRA Paper 68674, University Library of Munich, Germany.
    23. Alexander Chudik & M. Hashem Pesaran, 2017. "An Augmented Anderson-Hsiao Estimator for Dynamic Short-T Panels," Globalization Institute Working Papers 327, Federal Reserve Bank of Dallas, revised 27 Mar 2021.
    24. repec:spo:wpecon:info:hdl:2441/f6h8764enu2lskk9p2m9mgp8l is not listed on IDEAS
    25. Hayakawa, Kazuhiko, 2024. "Recent development of covariance structure analysis in economics," Econometrics and Statistics, Elsevier, vol. 29(C), pages 31-48.

    More about this item

    Keywords

    Dynamic panel data; Maximum likelihood; Monte Carlo simulation;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:series:v:14:y:2023:i:3:d:10.1007_s13209-023-00286-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.