IDEAS home Printed from https://ideas.repec.org/a/spr/reecde/v17y2013i2p95-128.html
   My bibliography  Save this article

The Gates Hillman prediction market

Author

Listed:
  • Abraham Othman

    ()

  • Tuomas Sandholm

    ()

Abstract

The Gates Hillman prediction market (GHPM) was an internet prediction market designed to predict the opening day of the Gates and Hillman Centers, the new computer science complex at Carnegie Mellon University. Unlike a traditional continuous double auction format, the GHPM was mediated by an automated market maker, a central agent responsible for pricing transactions with traders over the possible opening days. The GHPM’s event partition was, at the time, the largest ever elicited in any prediction market by an order of magnitude, and dealing with the market’s size required new advances, including a novel span-based elicitation interface that simplified interactions with the market maker. We use the large set of identity-linked trades generated by the GHPM to examine issues of trader performance and market microstructure, including how the market both reacted to and anticipated official news releases about the building’s opening day. Copyright Springer-Verlag Berlin Heidelberg 2013

Suggested Citation

  • Abraham Othman & Tuomas Sandholm, 2013. "The Gates Hillman prediction market," Review of Economic Design, Springer;Society for Economic Design, vol. 17(2), pages 95-128, June.
  • Handle: RePEc:spr:reecde:v:17:y:2013:i:2:p:95-128
    DOI: 10.1007/s10058-013-0144-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10058-013-0144-z
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Forsythe, Robert & Forrest Nelson & George R. Neumann & Jack Wright, 1992. "Anatomy of an Experimental Political Stock Market," American Economic Review, American Economic Association, vol. 82(5), pages 1142-1161, December.
    2. Wolfers, Justin & Zitzewitz, Eric, 2006. "Five Open Questions About Prediction Markets," CEPR Discussion Papers 5562, C.E.P.R. Discussion Papers.
    3. repec:reg:rpubli:259 is not listed on IDEAS
    4. Paul J. Healy & Sera Linardi & J. Richard Lowery & John O. Ledyard, 2010. "Prediction Markets: Alternative Mechanisms for Complex Environments with Few Traders," Management Science, INFORMS, vol. 56(11), pages 1977-1996, November.
    5. Robin Hanson, 2007. "Logarithmic Market Scoring Rules for Modular Combinatorial Information Aggregation," Journal of Prediction Markets, University of Buckingham Press, vol. 1(1), pages 3-15, February.
    6. Ali, Mukhtar M, 1977. "Probability and Utility Estimates for Racetrack Bettors," Journal of Political Economy, University of Chicago Press, vol. 85(4), pages 803-815, August.
    7. Forsythe, Robert & Rietz, Thomas A. & Ross, Thomas W., 1999. "Wishes, expectations and actions: a survey on price formation in election stock markets," Journal of Economic Behavior & Organization, Elsevier, vol. 39(1), pages 83-110, May.
    8. Justin Wolfers & Eric Zitzewitz, 2004. "Prediction Markets," Journal of Economic Perspectives, American Economic Association, vol. 18(2), pages 107-126, Spring.
    9. Kenneth Oliven & Thomas A. Rietz, 2004. "Suckers Are Born but Markets Are Made: Individual Rationality, Arbitrage, and Market Efficiency on an Electronic Futures Market," Management Science, INFORMS, vol. 50(3), pages 336-351, March.
    10. Ledyard, John & Hanson, Robin & Ishikida, Takashi, 2009. "An experimental test of combinatorial information markets," Journal of Economic Behavior & Organization, Elsevier, vol. 69(2), pages 182-189, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Prediction markets; Automated market making; Case studies; Market design; D4; D7;

    JEL classification:

    • D4 - Microeconomics - - Market Structure, Pricing, and Design
    • D7 - Microeconomics - - Analysis of Collective Decision-Making

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:reecde:v:17:y:2013:i:2:p:95-128. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: http://www.springer.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.