IDEAS home Printed from https://ideas.repec.org/a/spr/qualqt/v47y2013i6p3335-3347.html
   My bibliography  Save this article

GMADM-based attributes selection method in developing prediction model

Author

Listed:
  • Sue-Fen Huang
  • Ching-Hsue Cheng

Abstract

Attribute Selection is an important issue for developing a prediction model, however, how to determine an effective attribute selection algorithm is an important but difficult issue. Attribute selection can effectively delete the irrelevant and redundant attributes to increase the prediction accuracy, and evaluating attribute selection methods usually need to consider several criteria such as accuracy, type I error, and type II error. In this paper, the selected attribute process is modeled as a group multiple attributes decision making (GMADM) problem. In evaluating different GMACD methods, the most results usually are consistently, But there are some situations where the evaluated outcomes have different results. The GMADM method is useful tool for evaluating attribute selection algorithms, and the TOPSIS is capable of identifying a compromised solution when different GMADM method result in conflicting rankings. Therefore, this paper proposes an objective (persuasive) GMADM-based attributes selection method to solve this disagreement and help decision makers pick the most suitable method. After verification, the proposed model is more persuasive to evaluate the attributes selection methods for developing prediction model. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Sue-Fen Huang & Ching-Hsue Cheng, 2013. "GMADM-based attributes selection method in developing prediction model," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(6), pages 3335-3347, October.
  • Handle: RePEc:spr:qualqt:v:47:y:2013:i:6:p:3335-3347
    DOI: 10.1007/s11135-012-9722-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11135-012-9722-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11135-012-9722-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schneeweiss, H. & Mathes, H., 1995. "Factor Analysis and Principal Components," Journal of Multivariate Analysis, Elsevier, vol. 55(1), pages 105-124, October.
    2. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    3. Peng, Yi & Kou, Gang & Wang, Guoxun & Shi, Yong, 2011. "FAMCDM: A fusion approach of MCDM methods to rank multiclass classification algorithms," Omega, Elsevier, vol. 39(6), pages 677-689, December.
    4. Menjoge, Rajiv S. & Welsch, Roy E., 2010. "A diagnostic method for simultaneous feature selection and outlier identification in linear regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3181-3193, December.
    5. Giles, David E. A. & Srivastava, Virendra K., 1993. "The exact distribution of a least squares regression coefficient estimator after a preliminary t-test," Statistics & Probability Letters, Elsevier, vol. 16(1), pages 59-64, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    2. Christian Growitsch & Tooraj Jamasb & Christine Müller & Matthias Wissner, 2016. "Social Cost Efficient Service Quality: Integrating Customer Valuation in Incentive Regulation—Evidence from the Case of Norway," International Series in Operations Research & Management Science, in: Joe Zhu (ed.), Data Envelopment Analysis, chapter 0, pages 71-91, Springer.
    3. Franz R. Hahn, 2007. "Determinants of Bank Efficiency in Europe. Assessing Bank Performance Across Markets," WIFO Studies, WIFO, number 31499, March.
    4. Alperovych, Yan & Hübner, Georges & Lobet, Fabrice, 2015. "How does governmental versus private venture capital backing affect a firm's efficiency? Evidence from Belgium," Journal of Business Venturing, Elsevier, vol. 30(4), pages 508-525.
    5. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    6. repec:lan:wpaper:1115 is not listed on IDEAS
    7. Azarnoosh Kafi & Behrouz Daneshian & Mohsen Rostamy-Malkhalifeh, 2021. "Forecasting the confidence interval of efficiency in fuzzy DEA," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 31(1), pages 41-59.
    8. Ruiqing Yuan & Xiangyang Xu & Yanli Wang & Jiayi Lu & Ying Long, 2024. "Evaluating Carbon-Emission Efficiency in China’s Construction Industry: An SBM-Model Analysis of Interprovincial Building Heating," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    9. Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & de Pinho Matos, Giordano Bruno Braz, 2015. "Statistical evaluation of Data Envelopment Analysis versus COLS Cobb–Douglas benchmarking models for the 2011 Brazilian tariff revision," Socio-Economic Planning Sciences, Elsevier, vol. 49(C), pages 47-60.
    10. Kristiaan Kerstens & Ignace Van de Woestyne, 2018. "Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions," Annals of Operations Research, Springer, vol. 271(2), pages 1067-1078, December.
    11. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    12. Bo Li & Muhammad Mohiuddin & Qian Liu, 2019. "Determinants and Differences of Township Hospital Efficiency among Chinese Provinces," IJERPH, MDPI, vol. 16(9), pages 1-16, May.
    13. Ahmad, Usman, 2011. "Financial Reforms and Banking Efficiency: Case of Pakistan," MPRA Paper 34220, University Library of Munich, Germany.
    14. Nijkamp, P. & Stough, R. & Sahin, M., 2009. "Impact of social and human capital on business performance of migrant entrepreneurs - a comparative dutch-us study," Serie Research Memoranda 0017, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    15. Bowlin, W. F., 1995. "A characterization of the financial condition of the United States' aerospace-defense industrial base," Omega, Elsevier, vol. 23(5), pages 539-555, October.
    16. Zhang, Chonghui & Bai, Chen & Su, Weihua & Balezentis, Tomas, 2024. "The centralised data envelopment analysis model integrated with cost information and utility theory for power price setting under carbon peak strategy at the firm-level," Energy, Elsevier, vol. 292(C).
    17. Mika Kortelainen & Timo Kuosmanen, 2007. "Eco-efficiency analysis of consumer durables using absolute shadow prices," Journal of Productivity Analysis, Springer, vol. 28(1), pages 57-69, October.
    18. Ashrafi, Ali & Seow, Hsin-Vonn & Lee, Lai Soon & Lee, Chew Ging, 2013. "The efficiency of the hotel industry in Singapore," Tourism Management, Elsevier, vol. 37(C), pages 31-34.
    19. Büschken, Joachim, 2009. "When does data envelopment analysis outperform a naïve efficiency measurement model?," European Journal of Operational Research, Elsevier, vol. 192(2), pages 647-657, January.
    20. repec:lan:wpaper:4471 is not listed on IDEAS
    21. Muhammad Jam e Kausar Ali Asghar & Abdul Zahid Khan & Hafiz Ghufran Ali Khan, 2019. "Economies of Scale and Efficiency of Mutual Funds in Pakistan," Global Regional Review, Humanity Only, vol. 4(1), pages 96-103, March.
    22. António Afonso & Ana Patricia Montes & José M. Domínguez, 2024. "Measuring Tax Burden Efficiency in OECD Countries: An International Comparison," CESifo Working Paper Series 11333, CESifo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:qualqt:v:47:y:2013:i:6:p:3335-3347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.