IDEAS home Printed from https://ideas.repec.org/a/spr/opmare/v16y2023i3d10.1007_s12063-023-00365-0.html
   My bibliography  Save this article

The application of complex network theory for resilience improvement of knowledge-intensive supply chains

Author

Listed:
  • Jiakuan Chen

    (Xidian University)

  • Haoyu Wen

    (Xidian University)

Abstract

With frequent political conflicts and public health emergencies, global supply chains are constantly under risk interference, significantly reducing supply chain resilience (SCR), especially for the knowledge-intensive supply chains (KISCs). To assess and improve the resilience of KISC, this paper uses complex network theory to construct a directed weighted network model suitable for KISC and expresses the SCR as a comprehensive capability that can resist risk and recover from it. Using quantitative indicators plus qualitative assessment to quantify the resilience index and identify the network key nodes. Two resilience improvement paths are proposed for KISCs, improving firms’ development capacity and industrial backup. In the case study, the resilience of the integrated circuit (IC) supply chain is assessed and improved according to real data from the global IC industry. The findings show that (i) The resilience assessment based on the directed weighted network aligns with industrial reality. (ii) Improving firms’ development capability and industrial backup can improve SCR. (iii) Effective improvement of resilience requires targeting key nodes in the supply chain network (SCN). Moreover, the degree of firms’ development capability improvement and industrial backup intensity should be within a specific range.

Suggested Citation

  • Jiakuan Chen & Haoyu Wen, 2023. "The application of complex network theory for resilience improvement of knowledge-intensive supply chains," Operations Management Research, Springer, vol. 16(3), pages 1140-1161, September.
  • Handle: RePEc:spr:opmare:v:16:y:2023:i:3:d:10.1007_s12063-023-00365-0
    DOI: 10.1007/s12063-023-00365-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12063-023-00365-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12063-023-00365-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kamalahmadi, Masoud & Parast, Mahour Mellat, 2017. "An assessment of supply chain disruption mitigation strategies," International Journal of Production Economics, Elsevier, vol. 184(C), pages 210-230.
    2. David Simchi‐Levi & He Wang & Yehua Wei, 2018. "Increasing Supply Chain Robustness through Process Flexibility and Inventory," Production and Operations Management, Production and Operations Management Society, vol. 27(8), pages 1476-1491, August.
    3. Belarmino Adenso-Díaz & Julio Mar-Ortiz & Sebastián Lozano, 2018. "Assessing supply chain robustness to links failure," International Journal of Production Research, Taylor & Francis Journals, vol. 56(15), pages 5104-5117, August.
    4. Vimal K.E.K & Simon Peter Nadeem & Mahadharsan Ravichandran & Manavalan Ethirajan & Jayakrishna Kandasamy, 2022. "Resilience strategies to recover from the cascading ripple effect in a copper supply chain through project management," Operations Management Research, Springer, vol. 15(1), pages 440-460, June.
    5. Reyes Levalle, Rodrigo & Nof, Shimon Y., 2015. "Resilience by teaming in supply network formation and re-configuration," International Journal of Production Economics, Elsevier, vol. 160(C), pages 80-93.
    6. Vipul Jain & Sameer Kumar & Umang Soni & Charu Chandra, 2017. "Supply chain resilience: model development and empirical analysis," International Journal of Production Research, Taylor & Francis Journals, vol. 55(22), pages 6779-6800, November.
    7. Dmitry Ivanov & Alexandre Dolgui & Boris Sokolov, 2018. "Scheduling of recovery actions in the supply chain with resilience analysis considerations," International Journal of Production Research, Taylor & Francis Journals, vol. 56(19), pages 6473-6490, October.
    8. Sahitya Elluru & Hardik Gupta & Harpreet Kaur & Surya Prakash Singh, 2019. "Proactive and reactive models for disaster resilient supply chain," Annals of Operations Research, Springer, vol. 283(1), pages 199-224, December.
    9. Fei Ma & Huifeng Xue & Kum Fai Yuen & Qipeng Sun & Shumei Zhao & Yanxia Zhang & Kai Huang, 2020. "Assessing the Vulnerability of Logistics Service Supply Chain Based on Complex Network," Sustainability, MDPI, vol. 12(5), pages 1-18, March.
    10. Dmitry Ivanov & Boris Sokolov, 2019. "Simultaneous structural–operational control of supply chain dynamics and resilience," Annals of Operations Research, Springer, vol. 283(1), pages 1191-1210, December.
    11. Nakatani, Jun & Tahara, Kiyotaka & Nakajima, Kenichi & Daigo, Ichiro & Kurishima, Hideaki & Kudoh, Yuki & Matsubae, Kazuyo & Fukushima, Yasuhiro & Ihara, Tomohiko & Kikuchi, Yasunori & Nishijima, Asak, 2018. "A graph theory-based methodology for vulnerability assessment of supply chains using the life cycle inventory database," Omega, Elsevier, vol. 75(C), pages 165-181.
    12. Kamalahmadi, Masoud & Parast, Mahour Mellat, 2016. "A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 116-133.
    13. Wen Jun Tan & Allan N. Zhang & Wentong Cai, 2019. "A graph-based model to measure structural redundancy for supply chain resilience," International Journal of Production Research, Taylor & Francis Journals, vol. 57(20), pages 6385-6404, October.
    14. Jihee Han & KwangSup Shin, 2016. "Evaluation mechanism for structural robustness of supply chain considering disruption propagation," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 135-151, January.
    15. Ritesh Ojha & Abhijeet Ghadge & Manoj Kumar Tiwari & Umit S. Bititci, 2018. "Bayesian network modelling for supply chain risk propagation," International Journal of Production Research, Taylor & Francis Journals, vol. 56(17), pages 5795-5819, September.
    16. El Baz, Jamal & Ruel, Salomée, 2021. "Can supply chain risk management practices mitigate the disruption impacts on supply chains’ resilience and robustness? Evidence from an empirical survey in a COVID-19 outbreak era," International Journal of Production Economics, Elsevier, vol. 233(C).
    17. Muhammad Irfan & Mingzheng Wang & Naeem Akhtar, 2019. "Impact of IT capabilities on supply chain capabilities and organizational agility: a dynamic capability view," Operations Management Research, Springer, vol. 12(3), pages 113-128, December.
    18. Mohammed Belal Uddin & Bilkis Akhter, 2022. "Investigating the relationship between top management commitment, supply chain collaboration, and sustainable firm performance in the agro-processing supply chain," Operations Management Research, Springer, vol. 15(3), pages 1399-1417, December.
    19. William Ho & Tian Zheng & Hakan Yildiz & Srinivas Talluri, 2015. "Supply chain risk management: a literature review," International Journal of Production Research, Taylor & Francis Journals, vol. 53(16), pages 5031-5069, August.
    20. Kim Sundtoft Hald & Paula Coslugeanu, 2022. "The preliminary supply chain lessons of the COVID-19 disruption—What is the role of digital technologies?," Operations Management Research, Springer, vol. 15(1), pages 282-297, June.
    21. Hosseini, Seyedmohsen & Barker, Kash, 2016. "A Bayesian network model for resilience-based supplier selection," International Journal of Production Economics, Elsevier, vol. 180(C), pages 68-87.
    22. Reza Yazdanparast & Reza Tavakkoli-Moghaddam & Razieh Heidari & Leyla Aliabadi, 2021. "A hybrid Z-number data envelopment analysis and neural network for assessment of supply chain resilience: a case study," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 611-631, June.
    23. Kabir, KM Ariful & Kuga, Kazuki & Tanimoto, Jun, 2020. "The impact of information spreading on epidemic vaccination game dynamics in a heterogeneous complex network- A theoretical approach," Chaos, Solitons & Fractals, Elsevier, vol. 132(C).
    24. Yuhan Guo & Fangxia Hu & Hamid Allaoui & Youssef Boulaksil, 2019. "A distributed approximation approach for solving the sustainable supply chain network design problem," International Journal of Production Research, Taylor & Francis Journals, vol. 57(11), pages 3695-3718, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guilherme F. Frederico & Danny Samson, 2023. "Knowledge-based supply chains and economies: the relation with the emergent technologies and other current issues," Operations Management Research, Springer, vol. 16(3), pages 1057-1058, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    2. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    3. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    4. Seyedmohsen Hosseini & Dmitry Ivanov, 2022. "A new resilience measure for supply networks with the ripple effect considerations: a Bayesian network approach," Annals of Operations Research, Springer, vol. 319(1), pages 581-607, December.
    5. Dixit, Vijaya & Verma, Priyanka & Tiwari, Manoj Kumar, 2020. "Assessment of pre and post-disaster supply chain resilience based on network structural parameters with CVaR as a risk measure," International Journal of Production Economics, Elsevier, vol. 227(C).
    6. Alexander Pavlov & Dmitry Ivanov & Frank Werner & Alexandre Dolgui & Boris Sokolov, 2022. "Integrated detection of disruption scenarios, the ripple effect dispersal and recovery paths in supply chains," Annals of Operations Research, Springer, vol. 319(1), pages 609-631, December.
    7. Aghajani, Mojtaba & Ali Torabi, S. & Altay, Nezih, 2023. "Resilient relief supply planning using an integrated procurement-warehousing model under supply disruption," Omega, Elsevier, vol. 118(C).
    8. Satyendra Kumar Sharma & Praveen Ranjan Srivastava & Ajay Kumar & Anil Jindal & Shivam Gupta, 2023. "Supply chain vulnerability assessment for manufacturing industry," Annals of Operations Research, Springer, vol. 326(2), pages 653-683, July.
    9. Syed Imran Zaman & Sharfuddin Ahmed Khan & Sahar Qabool & Himanshu Gupta, 2023. "How digitalization in banking improve service supply chain resilience of e-commerce sector? a technological adoption model approach," Operations Management Research, Springer, vol. 16(2), pages 904-930, June.
    10. Alikhani, Reza & Ranjbar, Amirhossein & Jamali, Amir & Torabi, S. Ali & Zobel, Christopher W., 2023. "Towards increasing synergistic effects of resilience strategies in supply chain network design," Omega, Elsevier, vol. 116(C).
    11. Garvey, Myles D. & Carnovale, Steven, 2020. "The rippled newsvendor: A new inventory framework for modeling supply chain risk severity in the presence of risk propagation," International Journal of Production Economics, Elsevier, vol. 228(C).
    12. Belhadi, Amine & Kamble, Sachin S. & Venkatesh, Mani & Chiappetta Jabbour, Charbel Jose & Benkhati, Imane, 2022. "Building supply chain resilience and efficiency through additive manufacturing: An ambidextrous perspective on the dynamic capability view," International Journal of Production Economics, Elsevier, vol. 249(C).
    13. Chih-Hung Hsu & An-Yuan Chang & Ting-Yi Zhang & Wei-Da Lin & Wan-Ling Liu, 2021. "Deploying Resilience Enablers to Mitigate Risks in Sustainable Fashion Supply Chains," Sustainability, MDPI, vol. 13(5), pages 1-24, March.
    14. João Pires Ribeiro & Ana Paula F. D. Barbosa-Póvoa, 2023. "A responsiveness metric for the design and planning of resilient supply chains," Annals of Operations Research, Springer, vol. 324(1), pages 1129-1181, May.
    15. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    16. Dmitry Ivanov & Boris Sokolov, 2019. "Simultaneous structural–operational control of supply chain dynamics and resilience," Annals of Operations Research, Springer, vol. 283(1), pages 1191-1210, December.
    17. Iman Kazemian & S. Ali Torabi & Christopher W. Zobel & Yuhong Li & Milad Baghersad, 2022. "A multi-attribute supply chain network resilience assessment framework based on SNA-inspired indicators," Operational Research, Springer, vol. 22(3), pages 1853-1883, July.
    18. Zhao, Nanyang & Hong, Jiangtao & Lau, Kwok Hung, 2023. "Impact of supply chain digitalization on supply chain resilience and performance: A multi-mediation model," International Journal of Production Economics, Elsevier, vol. 259(C).
    19. Bygballe, Lena E. & Dubois, Anna & Jahre, Marianne, 2023. "The importance of resource interaction in strategies for managing supply chain disruptions," Journal of Business Research, Elsevier, vol. 154(C).
    20. Goldbeck, Nils & Angeloudis, Panagiotis & Ochieng, Washington, 2020. "Optimal supply chain resilience with consideration of failure propagation and repair logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:opmare:v:16:y:2023:i:3:d:10.1007_s12063-023-00365-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.