IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v116y2023ics0305048322002250.html
   My bibliography  Save this article

Towards increasing synergistic effects of resilience strategies in supply chain network design

Author

Listed:
  • Alikhani, Reza
  • Ranjbar, Amirhossein
  • Jamali, Amir
  • Torabi, S. Ali
  • Zobel, Christopher W.

Abstract

The recent COVID-19 pandemic showed that supply chain resilience is essential for continuity of many businesses, especially retail chains. However, there are still some challenges that have received little attention in the resilient supply chain network design (RSCND) literature. While numerous resilience strategies have been proposed to make supply chain networks resilient against disruptions, very few papers have discussed why and how those resilience strategies are selected out of many potential candidates given various sources of disruption, i.e., natural, man-made, and pandemic-oriented disruptions. The aim of this paper is to propose a multi-methodological approach, based on resource dependence theory and two-stage stochastic programming, for choosing the right resilience strategies in a RSCND problem considering their positive and negative synergistic effects under resource constraints. These interactions among resilience strategies can be referred to as supply chain dynamics. We then present a novel approach for determining the most suitable combination of candidate strategies with respect to these synergistic effects. The criticality of nodes and the susceptibility of the network in different echelons are also examined via simulating the disruptive risks in hidden and unexpected places. We provide a case study from the retail industry that illustrates the potentially significant impacts of network disruptions. Via extensive stress-testing, we show the benefits of applying multiple resilience capabilities simultaneously. Our findings demonstrate the importance of considering synergistic effects among resilience strategies under budget limitations for supply chain resilience.

Suggested Citation

  • Alikhani, Reza & Ranjbar, Amirhossein & Jamali, Amir & Torabi, S. Ali & Zobel, Christopher W., 2023. "Towards increasing synergistic effects of resilience strategies in supply chain network design," Omega, Elsevier, vol. 116(C).
  • Handle: RePEc:eee:jomega:v:116:y:2023:i:c:s0305048322002250
    DOI: 10.1016/j.omega.2022.102819
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048322002250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2022.102819?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salehi Sadghiani, N. & Torabi, S.A. & Sahebjamnia, N., 2015. "Retail supply chain network design under operational and disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 75(C), pages 95-114.
    2. Tsan-Ming Choi & T. C. E. Cheng & Xiande Zhao & Tsan-Ming Choi & T. C. E. Cheng & Xiande Zhao, 2016. "Multi-Methodological Research in Operations Management," Production and Operations Management, Production and Operations Management Society, vol. 25(3), pages 379-389, March.
    3. Lücker, Florian & Seifert, Ralf W., 2017. "Building up Resilience in a Pharmaceutical Supply Chain through Inventory, Dual Sourcing and Agility Capacity," Omega, Elsevier, vol. 73(C), pages 114-124.
    4. Brett Massimino & John V. Gray & Yingchao Lan, 2018. "On the Inattention to Digital Confidentiality in Operations and Supply Chain Research," Production and Operations Management, Production and Operations Management Society, vol. 27(8), pages 1492-1515, August.
    5. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    6. Rozhkov, Maxim & Ivanov, Dmitry & Blackhurst, Jennifer & Nair, Anand, 2022. "Adapting supply chain operations in anticipation of and during the COVID-19 pandemic," Omega, Elsevier, vol. 110(C).
    7. Govindan, Kannan & Fattahi, Mohammad, 2017. "Investigating risk and robustness measures for supply chain network design under demand uncertainty: A case study of glass supply chain," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 680-699.
    8. Masoud Kamalahmadi & Mansoor Shekarian & Mahour Mellat Parast, 2022. "The impact of flexibility and redundancy on improving supply chain resilience to disruptions," International Journal of Production Research, Taylor & Francis Journals, vol. 60(6), pages 1992-2020, March.
    9. Keyvanshokooh, Esmaeil & Ryan, Sarah M. & Kabir, Elnaz, 2016. "Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition," European Journal of Operational Research, Elsevier, vol. 249(1), pages 76-92.
    10. Massari, Giovanni Francesco & Giannoccaro, Ilaria, 2021. "Investigating the effect of horizontal coopetition on supply chain resilience in complex and turbulent environments," International Journal of Production Economics, Elsevier, vol. 237(C).
    11. Zhalechian, M. & Torabi, S. Ali & Mohammadi, M., 2018. "Hub-and-spoke network design under operational and disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 20-43.
    12. Baghalian, Atefeh & Rezapour, Shabnam & Farahani, Reza Zanjirani, 2013. "Robust supply chain network design with service level against disruptions and demand uncertainties: A real-life case," European Journal of Operational Research, Elsevier, vol. 227(1), pages 199-215.
    13. Nader Azad & Elkafi Hassini, 2019. "A Benders Decomposition Method for Designing Reliable Supply Chain Networks Accounting for Multimitigation Strategies and Demand Losses," Transportation Science, INFORMS, vol. 53(5), pages 1287-1312, September.
    14. Wen Jun Tan & Allan N. Zhang & Wentong Cai, 2019. "A graph-based model to measure structural redundancy for supply chain resilience," International Journal of Production Research, Taylor & Francis Journals, vol. 57(20), pages 6385-6404, October.
    15. He, Jian & Alavifard, Farzad & Ivanov, Dmitry & Jahani, Hamed, 2019. "A real-option approach to mitigate disruption risk in the supply chain," Omega, Elsevier, vol. 88(C), pages 133-149.
    16. Ivanov, Dmitry & Sokolov, Boris & Kaeschel, Joachim, 2010. "A multi-structural framework for adaptive supply chain planning and operations control with structure dynamics considerations," European Journal of Operational Research, Elsevier, vol. 200(2), pages 409-420, January.
    17. Jan A. Van Mieghem, 2013. "OM Forum--Three Rs of Operations Management: Research, Relevance, and Rewards," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 2-5, June.
    18. Sawik, Tadeusz, 2022. "Stochastic optimization of supply chain resilience under ripple effect: A COVID-19 pandemic related study," Omega, Elsevier, vol. 109(C).
    19. Alikhani, Reza & Torabi, S. Ali & Altay, Nezih, 2019. "Strategic supplier selection under sustainability and risk criteria," International Journal of Production Economics, Elsevier, vol. 208(C), pages 69-82.
    20. Snoeck, André & Udenio, Maximiliano & Fransoo, Jan C., 2019. "A stochastic program to evaluate disruption mitigation investments in the supply chain," European Journal of Operational Research, Elsevier, vol. 274(2), pages 516-530.
    21. Simon, Jay & Omar, Ayman, 2020. "Cybersecurity investments in the supply chain: Coordination and a strategic attacker," European Journal of Operational Research, Elsevier, vol. 282(1), pages 161-171.
    22. Hasani, Aliakbar & Khosrojerdi, Amirhossein, 2016. "Robust global supply chain network design under disruption and uncertainty considering resilience strategies: A parallel memetic algorithm for a real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 87(C), pages 20-52.
    23. Sanci, Ece & Daskin, Mark S., 2019. "Integrating location and network restoration decisions in relief networks under uncertainty," European Journal of Operational Research, Elsevier, vol. 279(2), pages 335-350.
    24. Masoud Kamalahmadi & Mahour Mellat-Parast, 2016. "Developing a resilient supply chain through supplier flexibility and reliability assessment," International Journal of Production Research, Taylor & Francis Journals, vol. 54(1), pages 302-321, January.
    25. Alikhani, Reza & Torabi, S.Ali & Altay, Nezih, 2021. "Retail supply chain network design with concurrent resilience capabilities," International Journal of Production Economics, Elsevier, vol. 234(C).
    26. David Simchi‐Levi & He Wang & Yehua Wei, 2018. "Increasing Supply Chain Robustness through Process Flexibility and Inventory," Production and Operations Management, Production and Operations Management Society, vol. 27(8), pages 1476-1491, August.
    27. Gebhardt, Maximilian & Spieske, Alexander & Kopyto, Matthias & Birkel, Hendrik, 2022. "Increasing global supply chains’ resilience after the COVID-19 pandemic: Empirical results from a Delphi study," Journal of Business Research, Elsevier, vol. 150(C), pages 59-72.
    28. Matthews, Logan R. & Gounaris, Chrysanthos E. & Kevrekidis, Ioannis G., 2019. "Designing networks with resiliency to edge failures using two-stage robust optimization," European Journal of Operational Research, Elsevier, vol. 279(3), pages 704-720.
    29. Fattahi, Mohammad & Govindan, Kannan & Maihami, Reza, 2020. "Stochastic optimization of disruption-driven supply chain network design with a new resilience metric," International Journal of Production Economics, Elsevier, vol. 230(C).
    30. Geunyeong Byeon & Pascal Van Hentenryck & Russell Bent & Harsha Nagarajan, 2020. "Communication-Constrained Expansion Planning for Resilient Distribution Systems," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 968-985, October.
    31. Sodhi, ManMohan S. & Tang, Christopher S., 2014. "Guiding the next generation of doctoral students in operations management," International Journal of Production Economics, Elsevier, vol. 150(C), pages 28-36.
    32. Ozlem Ergun & Wallace J. Hopp & Pinar Keskinocak, 2023. "A structured overview of insights and opportunities for enhancing supply chain resilience," IISE Transactions, Taylor & Francis Journals, vol. 55(1), pages 57-74, January.
    33. Reza Alikhani & S.Ali Torabi & Nezih Altay, 2021. "Retail supply chain network design with concurrent resilience capabilities," Post-Print hal-03539192, HAL.
    34. Dmitry Ivanov & Boris Sokolov, 2019. "Simultaneous structural–operational control of supply chain dynamics and resilience," Annals of Operations Research, Springer, vol. 283(1), pages 1191-1210, December.
    35. Mohammaddust, Faeghe & Rezapour, Shabnam & Farahani, Reza Zanjirani & Mofidfar, Mohammad & Hill, Alex, 2017. "Developing lean and responsive supply chains: A robust model for alternative risk mitigation strategies in supply chain designs," International Journal of Production Economics, Elsevier, vol. 183(PC), pages 632-653.
    36. Andreas Wieland, 2021. "Dancing the Supply Chain: Toward Transformative Supply Chain Management," Journal of Supply Chain Management, Institute for Supply Management, vol. 57(1), pages 58-73, January.
    37. Klibi, Walid & Martel, Alain, 2012. "Modeling approaches for the design of resilient supply networks under disruptions," International Journal of Production Economics, Elsevier, vol. 135(2), pages 882-898.
    38. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    39. Losada, Chaya & Scaparra, M. Paola & O’Hanley, Jesse R., 2012. "Optimizing system resilience: A facility protection model with recovery time," European Journal of Operational Research, Elsevier, vol. 217(3), pages 519-530.
    40. Gilani, Hani & Sahebi, Hadi, 2022. "A data-driven robust optimization model by cutting hyperplanes on vaccine access uncertainty in COVID-19 vaccine supply chain," Omega, Elsevier, vol. 110(C).
    41. Jafar Namdar & Jennifer Blackhurst & Arash Azadegan, 2022. "On synergistic effects of resilience strategies: developing a layered defense approach," International Journal of Production Research, Taylor & Francis Journals, vol. 60(2), pages 661-685, January.
    42. Chowdhury, Md Maruf H. & Quaddus, Mohammed, 2017. "Supply chain resilience: Conceptualization and scale development using dynamic capability theory," International Journal of Production Economics, Elsevier, vol. 188(C), pages 185-204.
    43. Rezapour, Shabnam & Farahani, Reza Zanjirani & Pourakbar, Morteza, 2017. "Resilient supply chain network design under competition: A case study," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1017-1035.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alikhani, Reza & Eskandarpour, Majid & Jahani, Hamed, 2023. "Collaborative distribution network design with surging demand and facility disruptions," International Journal of Production Economics, Elsevier, vol. 262(C).
    2. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry, 2023. "Efficient resilience portfolio design in the supply chain with consideration of preparedness and recovery investments," Omega, Elsevier, vol. 117(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alikhani, Reza & Torabi, S.Ali & Altay, Nezih, 2021. "Retail supply chain network design with concurrent resilience capabilities," International Journal of Production Economics, Elsevier, vol. 234(C).
    2. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    3. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    4. Zhu, Xiaoyan & Cao, Yunzhi, 2021. "The optimal recovery-fund based strategy for uncertain supply chain disruptions: A risk-averse two-stage stochastic programming approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    5. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    6. Ivanov, Dmitry & Dolgui, Alexandre & Sokolov, Boris, 2022. "Cloud supply chain: Integrating Industry 4.0 and digital platforms in the “Supply Chain-as-a-Service”," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
    7. Rozhkov, Maxim & Ivanov, Dmitry & Blackhurst, Jennifer & Nair, Anand, 2022. "Adapting supply chain operations in anticipation of and during the COVID-19 pandemic," Omega, Elsevier, vol. 110(C).
    8. Fattahi, Mohammad & Govindan, Kannan & Keyvanshokooh, Esmaeil, 2017. "Responsive and resilient supply chain network design under operational and disruption risks with delivery lead-time sensitive customers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 176-200.
    9. Manupati, V.K. & Schoenherr, Tobias & Ramkumar, M. & Panigrahi, Suraj & Sharma, Yash & Mishra, Prakriti, 2022. "Recovery strategies for a disrupted supply chain network: Leveraging blockchain technology in pre- and post-disruption scenarios," International Journal of Production Economics, Elsevier, vol. 245(C).
    10. Zhao, Nanyang & Hong, Jiangtao & Lau, Kwok Hung, 2023. "Impact of supply chain digitalization on supply chain resilience and performance: A multi-mediation model," International Journal of Production Economics, Elsevier, vol. 259(C).
    11. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry, 2023. "Efficient resilience portfolio design in the supply chain with consideration of preparedness and recovery investments," Omega, Elsevier, vol. 117(C).
    12. Babai, M. Zied & Ivanov, Dmitry & Kwon, Oh Kang, 2023. "Optimal ordering quantity under stochastic time-dependent price and demand with a supply disruption: A solution based on the change of measure technique," Omega, Elsevier, vol. 116(C).
    13. Rezapour, Shabnam & Srinivasan, Ramakrishnan & Tew, Jeffrey & Allen, Janet K. & Mistree, Farrokh, 2018. "Correlation between strategic and operational risk mitigation strategies in supply networks," International Journal of Production Economics, Elsevier, vol. 201(C), pages 225-248.
    14. Ghavamifar, Ali & Makui, Ahmad & Taleizadeh, Ata Allah, 2018. "Designing a resilient competitive supply chain network under disruption risks: A real-world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 87-109.
    15. Nayeri, Sina & Sazvar, Zeinab & Heydari, Jafar, 2022. "A global-responsive supply chain considering sustainability and resiliency: Application in the medical devices industry," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    16. Cheramin, Meysam & Saha, Apurba Kumar & Cheng, Jianqiang & Paul, Sanjoy Kumar & Jin, Hongyue, 2021. "Resilient NdFeB magnet recycling under the impacts of COVID-19 pandemic: Stochastic programming and Benders decomposition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    17. Fattahi, Mohammad & Govindan, Kannan & Maihami, Reza, 2020. "Stochastic optimization of disruption-driven supply chain network design with a new resilience metric," International Journal of Production Economics, Elsevier, vol. 230(C).
    18. Wissuwa, Florian & Durach, Christian F. & Choi, Thomas Y., 2022. "Selecting resilient suppliers: Supplier complexity and buyer disruption," International Journal of Production Economics, Elsevier, vol. 253(C).
    19. Dmitry Ivanov, 2022. "Viable supply chain model: integrating agility, resilience and sustainability perspectives—lessons from and thinking beyond the COVID-19 pandemic," Annals of Operations Research, Springer, vol. 319(1), pages 1411-1431, December.
    20. Holzapfel, Andreas & Potoczki, Tobias & Kuhn, Heinrich, 2023. "Designing the breadth and depth of distribution networks in the retail trade," International Journal of Production Economics, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:116:y:2023:i:c:s0305048322002250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.