IDEAS home Printed from https://ideas.repec.org/a/spr/elcore/v23y2023i4d10.1007_s10660-022-09544-w.html
   My bibliography  Save this article

Replenishment and delivery optimization for unmanned vending machines service system based on fuzzy clustering

Author

Listed:
  • Mozhu Wang

    (Renmin University of China)

  • Jianming Yao

    (Renmin University of China)

Abstract

The optimization of replenishment and delivery problem (RDP) for unmanned vending machines supply chain network (UVM-SCN) is challenging due to frequent service interruptions and supply–demand mismatches in operations. Many studies adopt proactive resilience strategies to solve those challenges. However, since most proactive resilience strategies are weak in providing dynamic redundancy towards frequent interruptions, we propose a two-stage resilience strategy to optimize the RDP for UVM-SCN, which redesigns the structure of UVM-SCN and allocates appropriate suppliers for different customers. The first stage focuses on the optimization of UVM-SCN structure. Based on the analysis of customers’ preferences, UVMs with similar geographic locations and customer preferences are clustered into closely related demand zones through the improved fuzzy C-means algorithm. The mutual rescue strategy is applied in each demand zone when interruptions occur to achieve quick transfer of products and customers. In the second stage, the dynamic matching mechanism, which integrates suppliers’ capabilities and customers’ requirements, is proposed to guarantee the provision of various products. On this basis, a scheduling model is established to optimize the RDP of UVM-SCN considering total cost, completion time and customers’ satisfaction, and solved by the genetic algorithm. The numerical studies show that the optimal solution can guarantee service reliability and satisfy customers’ demands at a competitive cost under continuous uncertainties, thereby demonstrating the validity and effectiveness of the model and the corresponding algorithm. This work extends the research on SCN structural resilience under frequent interruptions and contributes to the UVM-SCN resilience management by integrating suppliers’ capability and customers’ multi-dimensional requirements into one research framework.

Suggested Citation

  • Mozhu Wang & Jianming Yao, 2023. "Replenishment and delivery optimization for unmanned vending machines service system based on fuzzy clustering," Electronic Commerce Research, Springer, vol. 23(4), pages 2419-2461, December.
  • Handle: RePEc:spr:elcore:v:23:y:2023:i:4:d:10.1007_s10660-022-09544-w
    DOI: 10.1007/s10660-022-09544-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10660-022-09544-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10660-022-09544-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen Jun Tan & Wentong Cai & Allan N. Zhang, 2020. "Structural-aware simulation analysis of supply chain resilience," International Journal of Production Research, Taylor & Francis Journals, vol. 58(17), pages 5175-5195, September.
    2. Seyed Mohammad Khalili & Fariborz Jolai & Seyed Ali Torabi, 2017. "Integrated production–distribution planning in two-echelon systems: a resilience view," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 1040-1064, February.
    3. Ravi Anupindi & Maqbool Dada & Sachin Gupta, 1998. "Estimation of Consumer Demand with Stock-Out Based Substitution: An Application to Vending Machine Products," Marketing Science, INFORMS, vol. 17(4), pages 406-423.
    4. Jiho Yoon & Srinivas Talluri & Hakan Yildiz & William Ho, 2018. "Models for supplier selection and risk mitigation: a holistic approach," International Journal of Production Research, Taylor & Francis Journals, vol. 56(10), pages 3636-3661, May.
    5. Ping Cao & Mengmeng Fan & Ke Liu, 2015. "Optimal dynamic pricing problem considering patient and impatient customers’ purchasing behaviour," International Journal of Production Research, Taylor & Francis Journals, vol. 53(22), pages 6719-6735, November.
    6. Yunan Liu & Ward Whitt, 2011. "A Network of Time-Varying Many-Server Fluid Queues with Customer Abandonment," Operations Research, INFORMS, vol. 59(4), pages 835-846, August.
    7. Jin Cao & Zhibin Jiang & Kangzhou Wang, 2016. "Customer demand prediction of service-oriented manufacturing incorporating customer satisfaction," International Journal of Production Research, Taylor & Francis Journals, vol. 54(5), pages 1303-1321, March.
    8. Pan, Jeh-Nan & Nguyen, Hung Thi Ngoc, 2015. "Achieving customer satisfaction through product–service systems," European Journal of Operational Research, Elsevier, vol. 247(1), pages 179-190.
    9. Kamalahmadi, Masoud & Parast, Mahour Mellat, 2016. "A review of the literature on the principles of enterprise and supply chain resilience: Major findings and directions for future research," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 116-133.
    10. Wen Jun Tan & Allan N. Zhang & Wentong Cai, 2019. "A graph-based model to measure structural redundancy for supply chain resilience," International Journal of Production Research, Taylor & Francis Journals, vol. 57(20), pages 6385-6404, October.
    11. Brian Tomlin, 2006. "On the Value of Mitigation and Contingency Strategies for Managing Supply Chain Disruption Risks," Management Science, INFORMS, vol. 52(5), pages 639-657, May.
    12. Naso, David & Surico, Michele & Turchiano, Biagio & Kaymak, Uzay, 2007. "Genetic algorithms for supply-chain scheduling: A case study in the distribution of ready-mixed concrete," European Journal of Operational Research, Elsevier, vol. 177(3), pages 2069-2099, March.
    13. Yu, Wantao & Jacobs, Mark A. & Chavez, Roberto & Yang, Jiehui, 2019. "Dynamism, disruption orientation, and resilience in the supply chain and the impacts on financial performance: A dynamic capabilities perspective," International Journal of Production Economics, Elsevier, vol. 218(C), pages 352-362.
    14. Mark Turnquist & Eric Vugrin, 2013. "Design for resilience in infrastructure distribution networks," Environment Systems and Decisions, Springer, vol. 33(1), pages 104-120, March.
    15. Armin Jabbarzadeh & Behnam Fahimnia & Fatemeh Sabouhi, 2018. "Resilient and sustainable supply chain design: sustainability analysis under disruption risks," International Journal of Production Research, Taylor & Francis Journals, vol. 56(17), pages 5945-5968, September.
    16. Jafar Namdar & Xueping Li & Rupy Sawhney & Ninad Pradhan, 2018. "Supply chain resilience for single and multiple sourcing in the presence of disruption risks," International Journal of Production Research, Taylor & Francis Journals, vol. 56(6), pages 2339-2360, March.
    17. Alexandre Dolgui & Dmitry Ivanov & Boris Sokolov, 2020. "Reconfigurable supply chain: the X-network," International Journal of Production Research, Taylor & Francis Journals, vol. 58(13), pages 4138-4163, July.
    18. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    19. Ran Liu & Yangyi Tao & Qiaoyu Hu & Xiaolei Xie, 2017. "Simulation-based optimisation approach for the stochastic two-echelon logistics problem," International Journal of Production Research, Taylor & Francis Journals, vol. 55(1), pages 187-201, January.
    20. Kamalahmadi, Masoud & Parast, Mahour Mellat, 2017. "An assessment of supply chain disruption mitigation strategies," International Journal of Production Economics, Elsevier, vol. 184(C), pages 210-230.
    21. Fattahi, Mohammad & Govindan, Kannan & Maihami, Reza, 2020. "Stochastic optimization of disruption-driven supply chain network design with a new resilience metric," International Journal of Production Economics, Elsevier, vol. 230(C).
    22. Khaled, Abdullah A. & Jin, Mingzhou & Clarke, David B. & Hoque, Mohammad A., 2015. "Train design and routing optimization for evaluating criticality of freight railroad infrastructures," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 71-84.
    23. Xiang Zhong & Hyo Kyung Lee & Jingshan Li, 2017. "From production systems to health care delivery systems: a retrospective look on similarities, difficulties and opportunities," International Journal of Production Research, Taylor & Francis Journals, vol. 55(14), pages 4212-4227, July.
    24. Grigoroudis, E. & Siskos, Y., 2002. "Preference disaggregation for measuring and analysing customer satisfaction: The MUSA method," European Journal of Operational Research, Elsevier, vol. 143(1), pages 148-170, November.
    25. Shokouhyar, Sajjad & Shokoohyar, Sina & Safari, Sepehr, 2020. "Research on the influence of after-sales service quality factors on customer satisfaction," Journal of Retailing and Consumer Services, Elsevier, vol. 56(C).
    26. Lichun Zhou, 2020. "Product advertising recommendation in e-commerce based on deep learning and distributed expression," Electronic Commerce Research, Springer, vol. 20(2), pages 321-342, June.
    27. Hosseini, Seyedmohsen & Barker, Kash, 2016. "A Bayesian network model for resilience-based supplier selection," International Journal of Production Economics, Elsevier, vol. 180(C), pages 68-87.
    28. Ahani, Ali & Nilashi, Mehrbakhsh & Yadegaridehkordi, Elaheh & Sanzogni, Louis & Tarik, A. Rashid & Knox, Kathy & Samad, Sarminah & Ibrahim, Othman, 2019. "Revealing customers’ satisfaction and preferences through online review analysis: The case of Canary Islands hotels," Journal of Retailing and Consumer Services, Elsevier, vol. 51(C), pages 331-343.
    29. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon, 2020. "On metrics for supply chain resilience," European Journal of Operational Research, Elsevier, vol. 287(1), pages 145-158.
    30. Dmitry Ivanov & Alexandre Dolgui, 2020. "Viability of intertwined supply networks: extending the supply chain resilience angles towards survivability. A position paper motivated by COVID-19 outbreak," International Journal of Production Research, Taylor & Francis Journals, vol. 58(10), pages 2904-2915, May.
    31. Rezapour, Shabnam & Farahani, Reza Zanjirani & Pourakbar, Morteza, 2017. "Resilient supply chain network design under competition: A case study," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1017-1035.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aghajani, Mojtaba & Ali Torabi, S. & Altay, Nezih, 2023. "Resilient relief supply planning using an integrated procurement-warehousing model under supply disruption," Omega, Elsevier, vol. 118(C).
    2. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    3. Hosseini, Seyedmohsen & Ivanov, Dmitry & Dolgui, Alexandre, 2019. "Review of quantitative methods for supply chain resilience analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 285-307.
    4. Shoufeng Ji & Pengyun Zhao & Tingting Ji, 2023. "A Hybrid Optimization Method for Sustainable and Flexible Design of Supply–Production–Distribution Network in the Physical Internet," Sustainability, MDPI, vol. 15(7), pages 1-34, April.
    5. Ren, Huanyu & Wang, Chao & Mu, Dong & Lim, Ming K. & Yue, Xiongping & Hu, Xiaoqian & Peng, Rui & Tsao, Yu-Chung, 2024. "Resilience strategies in an intertwined supply network: Mitigating the vulnerability under disruption ripple effects," International Journal of Production Economics, Elsevier, vol. 278(C).
    6. Maureen S. Golan & Laura H. Jernegan & Igor Linkov, 2020. "Trends and applications of resilience analytics in supply chain modeling: systematic literature review in the context of the COVID-19 pandemic," Environment Systems and Decisions, Springer, vol. 40(2), pages 222-243, June.
    7. Lohmer, Jacob & Bugert, Niels & Lasch, Rainer, 2020. "Analysis of resilience strategies and ripple effect in blockchain-coordinated supply chains: An agent-based simulation study," International Journal of Production Economics, Elsevier, vol. 228(C).
    8. Zhao, Nanyang & Hong, Jiangtao & Lau, Kwok Hung, 2023. "Impact of supply chain digitalization on supply chain resilience and performance: A multi-mediation model," International Journal of Production Economics, Elsevier, vol. 259(C).
    9. Antonio Zavala-Alcívar & María-José Verdecho & Juan-José Alfaro-Saiz, 2020. "A Conceptual Framework to Manage Resilience and Increase Sustainability in the Supply Chain," Sustainability, MDPI, vol. 12(16), pages 1-38, August.
    10. Mohammed, Ahmed & Lopes de Sousa Jabbour, Ana Beatriz & Koh, Lenny & Hubbard, Nicolas & Chiappetta Jabbour, Charbel Jose & Al Ahmed, Teejan, 2022. "The sourcing decision-making process in the era of digitalization: A new quantitative methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    11. K. Katsaliaki & P. Galetsi & S. Kumar, 2022. "Supply chain disruptions and resilience: a major review and future research agenda," Annals of Operations Research, Springer, vol. 319(1), pages 965-1002, December.
    12. Cheramin, Meysam & Saha, Apurba Kumar & Cheng, Jianqiang & Paul, Sanjoy Kumar & Jin, Hongyue, 2021. "Resilient NdFeB magnet recycling under the impacts of COVID-19 pandemic: Stochastic programming and Benders decomposition," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 155(C).
    13. Abdolreza Roshani & Philip Walker-Davies & Glenn Parry, 2024. "Designing resilient supply chain networks: a systematic literature review of mitigation strategies," Annals of Operations Research, Springer, vol. 341(2), pages 1267-1332, October.
    14. Ivanov, Dmitry & Dolgui, Alexandre, 2021. "OR-methods for coping with the ripple effect in supply chains during COVID-19 pandemic: Managerial insights and research implications," International Journal of Production Economics, Elsevier, vol. 232(C).
    15. Iman Kazemian & S. Ali Torabi & Christopher W. Zobel & Yuhong Li & Milad Baghersad, 2022. "A multi-attribute supply chain network resilience assessment framework based on SNA-inspired indicators," Operational Research, Springer, vol. 22(3), pages 1853-1883, July.
    16. Hanieh Shekarabi & Mohammad Mahdi Vali-Siar & Ashkan Mozdgir, 2024. "Food supply chain network design under uncertainty and pandemic disruption," Operational Research, Springer, vol. 24(2), pages 1-37, June.
    17. Mozhu Wang & Jianming Yao, 2023. "A reliable location design of unmanned vending machines based on customer satisfaction," Electronic Commerce Research, Springer, vol. 23(1), pages 541-575, March.
    18. Shashi & Piera Centobelli & Roberto Cerchione & Myriam Ertz, 2020. "Managing supply chain resilience to pursue business and environmental strategies," Business Strategy and the Environment, Wiley Blackwell, vol. 29(3), pages 1215-1246, March.
    19. Chen, Li-Ming & Chang, Wei-Lun, 2021. "Supply- and cyber-related disruptions in cloud supply chain firms: Determining the best recovery speeds," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    20. Dmitry Ivanov, 2024. "Exiting the COVID-19 pandemic: after-shock risks and avoidance of disruption tails in supply chains," Annals of Operations Research, Springer, vol. 335(3), pages 1627-1644, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:23:y:2023:i:4:d:10.1007_s10660-022-09544-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.