IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Estimation of Consumer Demand with Stock-Out Based Substitution: An Application to Vending Machine Products

  • Ravi Anupindi

    (J.L. Kellogg Graduate School of Management, Northwestern University, Evanston, Illinois 60208)

  • Maqbool Dada

    (Krannert Graduate School of Management, Purdue University, West Lafayette, Indiana 47907)

  • Sachin Gupta

    (J.L. Kellogg Graduate School of Management, Northwestern University, Evanston, Illinois 60208)

Registered author(s):

    The occurrence of temporary stock-outs at retail is common in frequently purchased product categories. Available empirical evidence suggests that when faced with stock-outs, consumers are often willing to buy substitute items. An important implication of this consumer behavior is that observed sales of an item no longer provide a good measure of its core demand rate. Sales of items that stock-out are right-censored, while sales of other items are inflated because of substitutions. Knowledge of the true demand rates and substitution rates is important for the retailer for a variety of category management decisions such as the ideal assortment to carry, how much to stock of each item, and how often to replenish the stock. The estimated substitution rates can also be used to infer patterns of competition between items in the category. In this paper we propose methods to estimate demand rates and substitution rates in such contexts. We develop a model of customer arrivals and choice between goods that explicitly allows for possible product substitution and lost sales when a customer faces a stock-out. The model is developed in the context of retail vending, an industry that accounts for a sizable part of the retail sales of many consumer products. We consider the information set available from two kinds of inventory tracking systems. In the best case scenario of a perpetual inventory system in which times of stock-out occurrence and cumulative sales of all goods up to these times are observed, we derive Maximum Likelihood Estimates (MLEs) of the demand parameters and show that they are especially simple and intuitive. However, state-of-the-art inventory systems in retail vending provide only periodic data, i.e., data in which times of stock-out occurrence are unobserved or “missing.” For these data we show how the Expectation-Maximization (EM) algorithm can be employed to obtain the MLEs of the demand parameters by treating the stock-out times as missing data. We show an application of the model to daily sales and stocking data pooled across multiple beverage vending machines in a midwestern U.S. city. The vending machines in the application carry identical assortments of six brands. Since the number of parameters to be estimated is too large given the available data, we discuss possible restrictions of the consumer choice model to accomplish the estimation. Our results indicate that demand rates estimated naively by using observed sales rates are biased, even for items that have very few occurrences of stock-outs. We also find significant differences among the substitution rates of the six brands. The methods proposed in our paper can be modified to apply to many nonvending retail settings in which consumer choices are observed, not their preferences, and choices are constrained because of unavailability of items in the choice set. One such context is in-store grocery retailing, where similar issues of information availability arise. In this context an important issue that would need to be dealt with is changes in the retail environment caused by retail promotions.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://dx.doi.org/10.1287/mksc.17.4.406
    Download Restriction: no

    Article provided by INFORMS in its journal Marketing Science.

    Volume (Year): 17 (1998)
    Issue (Month): 4 ()
    Pages: 406-423

    as
    in new window

    Handle: RePEc:inm:ormksc:v:17:y:1998:i:4:p:406-423
    Contact details of provider: Postal: 7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA
    Phone: +1-443-757-3500
    Fax: 443-757-3515
    Web page: http://www.informs.org/
    Email:


    More information through EDIRC

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:17:y:1998:i:4:p:406-423. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.