IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i5d10.1007_s12351-022-00695-0.html
   My bibliography  Save this article

A city logistics system for freight transportation: integrating information technology and operational research

Author

Listed:
  • Sotiris P. Gayialis

    (National Technical University of Athens)

  • Evripidis P. Kechagias

    (National Technical University of Athens)

  • Grigorios D. Konstantakopoulos

    (National Technical University of Athens)

Abstract

City logistics comprise the delivery and picking of goods in urban areas, affecting the performance of businesses and quality of life in cities. The systems that support city logistics for freight transportation have a great research interest for academics, and it is a hot topic for businesses. Research issues like delivery with time windows, traffic congestion, route optimization, and dynamic routing are of great importance in the literature of city logistics. However, that research activity often does not meet practical solutions, and there is a gap between operational research (OR) and business practices in freight transportation. This article presents the development of an information system that supports the efficient delivery of goods within urban areas. The system utilizes a set of OR algorithms enabled by information technologies (IT) to support logistics operations effectively. It mainly deals with optimizing vehicle routes and schedules, while considering the delivery time windows, the specific requirements of customers, the characteristics of the street network, the need for dynamic routing and rerouting, and traffic congestion issues in cities. The article presents the system’s architecture, its development methodology, its basic functionality, the developed algorithms, as well as the adopted information technologies. It concludes with validating the system with real-life business data and the conclusions from the entire effort.

Suggested Citation

  • Sotiris P. Gayialis & Evripidis P. Kechagias & Grigorios D. Konstantakopoulos, 2022. "A city logistics system for freight transportation: integrating information technology and operational research," Operational Research, Springer, vol. 22(5), pages 5953-5982, November.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:5:d:10.1007_s12351-022-00695-0
    DOI: 10.1007/s12351-022-00695-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-022-00695-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-022-00695-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Gao & J. W. Wang, 2021. "A resilience assessment framework for urban transportation systems," International Journal of Production Research, Taylor & Francis Journals, vol. 59(7), pages 2177-2192, April.
    2. Sotiris P. Gayialis & Grigorios D. Konstantakopoulos & Ilias P. Tatsiopoulos, 2019. "Vehicle Routing Problem for Urban Freight Transportation: A Review of the Recent Literature," Springer Proceedings in Business and Economics, in: Angelo Sifaleras & Konstantinos Petridis (ed.), Operational Research in the Digital Era – ICT Challenges, pages 89-104, Springer.
    3. Ballantyne, Erica E.F. & Lindholm, Maria & Whiteing, Anthony, 2013. "A comparative study of urban freight transport planning: addressing stakeholder needs," Journal of Transport Geography, Elsevier, vol. 32(C), pages 93-101.
    4. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    5. Julian Allen & Michael Browne & Allan Woodburn & Jacques Leonardi, 2012. "The Role of Urban Consolidation Centres in Sustainable Freight Transport," Transport Reviews, Taylor & Francis Journals, vol. 32(4), pages 473-490, April.
    6. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zuzanna Zaporowska & Marek Szczepański, 2022. "Exploration of Lean Management Methods Used in Shared Services Centers, Drivers and Barriers to Process Selection for Improvements in the Light of Risk Management and ESG Reporting," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    2. Zhinan Li & Qinming Liu & Chunming Ye & Ming Dong & Yihan Zheng, 2022. "Achieving Resilience: Resilient Price and Quality Strategies of Fresh Food Dual-Channel Supply Chain Considering the Disruption," Sustainability, MDPI, vol. 14(11), pages 1-24, May.
    3. Paweł Hanczar & Zahra Azadehranjbar, 2022. "A Bi-Objective Sustainable Supply Chain Redesign: What Effect Does Energy Availability Have on Redesign?," Energies, MDPI, vol. 15(10), pages 1-13, May.
    4. Yongrong Xin & Kengcheng Zheng & Yujiao Zhou & Yangyang Han & P. R. Tadikamalla & Qin Fan, 2022. "Logistics Efficiency under Carbon Constraints Based on a Super SBM Model with Undesirable Output: Empirical Evidence from China’s Logistics Industry," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    5. Sonya Leech & Jonathan Dunne & David Malone, 2022. "A Framework to Model Bursty Electronic Data Interchange Messages for Queueing Systems," Future Internet, MDPI, vol. 14(5), pages 1-32, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Babagolzadeh, Mahla & Zhang, Yahua & Abbasi, Babak & Shrestha, Anup & Zhang, Anming, 2022. "Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem," Transport Policy, Elsevier, vol. 128(C), pages 38-51.
    2. Pradhananga, Rojee & Taniguchi, Eiichi & Yamada, Tadashi & Qureshi, Ali Gul, 2014. "Bi-objective decision support system for routing and scheduling of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 135-148.
    3. Qi, Mingyao & Lin, Wei-Hua & Li, Nan & Miao, Lixin, 2012. "A spatiotemporal partitioning approach for large-scale vehicle routing problems with time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 248-257.
    4. Zhiping Zuo & Yanhui Li & Jing Fu & Jianlin Wu, 2019. "Human Resource Scheduling Model and Algorithm with Time Windows and Multi-Skill Constraints," Mathematics, MDPI, vol. 7(7), pages 1-18, July.
    5. Amaya, Johanna & Arellana, Julian & Delgado-Lindeman, Maira, 2020. "Stakeholders perceptions to sustainable urban freight policies in emerging markets," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 329-348.
    6. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    7. Müller, Juliane, 2010. "Approximative solutions to the bicriterion Vehicle Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 202(1), pages 223-231, April.
    8. Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
    9. Tomáš Režnar & Jan Martinovič & Kateřina Slaninová & Ekaterina Grakova & Vít Vondrák, 2017. "Probabilistic time-dependent vehicle routing problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(3), pages 545-560, September.
    10. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    11. Richard Eglese & Sofoclis Zambirinis, 2018. "Disruption management in vehicle routing and scheduling for road freight transport: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 1-17, April.
    12. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    13. Afsaneh Amiri & Majid Salari, 2019. "Time-constrained maximal covering routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(2), pages 415-468, June.
    14. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    15. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    16. TALARICO, Luca & SÖRENSEN, Kenneth & SPRINGAEL, Johan, 2013. "The risk constrained cash-in-transit vehicle routing problem with time windows," Working Papers 2013012, University of Antwerp, Faculty of Business and Economics.
    17. Min-Xia Zhang & Hong-Fan Yan & Jia-Yu Wu & Yu-Jun Zheng, 2020. "Quarantine Vehicle Scheduling for Transferring High-Risk Individuals in Epidemic Areas," IJERPH, MDPI, vol. 17(7), pages 1-17, March.
    18. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.
    19. Van Breedam, Alex, 2002. "A parametric analysis of heuristics for the vehicle routing problem with side-constraints," European Journal of Operational Research, Elsevier, vol. 137(2), pages 348-370, March.
    20. Gerald Senarclens de Grancy & Marc Reimann, 2016. "Vehicle routing problems with time windows and multiple service workers: a systematic comparison between ACO and GRASP," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 24(1), pages 29-48, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:5:d:10.1007_s12351-022-00695-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.