IDEAS home Printed from https://ideas.repec.org/a/eee/trapol/v128y2022icp38-51.html
   My bibliography  Save this article

Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem

Author

Listed:
  • Babagolzadeh, Mahla
  • Zhang, Yahua
  • Abbasi, Babak
  • Shrestha, Anup
  • Zhang, Anming

Abstract

The major metropolitan airports in Australia have become increasingly congested, resulting in substantial increases in operational costs and waiting time at these airports. This paper assesses the effectiveness of subsidy programs in shifting airfreight from metropolitan airports to regional airports assuming the vehicle routing problem approach is used to optimise the downstream (i.e., road) logistics. We analyse the freight distribution network structure and logistics decisions under two (government) subsidy scenarios. We develop a mixed integer linear programming model incorporating the time-window and release-time constraints. A case study in Australia is used to illustrate the application of the proposed framework. The results show that introducing subsidies can effectively reduce the total costs from the prospective of industries involved in the airfreight distribution. The subsidy program under a non-linear subsidy provides a better performance from the economic and delivery time perspectives. However, if the primary goal is to reduce the volume of cargo traffic at the metropolitan airport, a linear subsidy program is preferred.

Suggested Citation

  • Babagolzadeh, Mahla & Zhang, Yahua & Abbasi, Babak & Shrestha, Anup & Zhang, Anming, 2022. "Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem," Transport Policy, Elsevier, vol. 128(C), pages 38-51.
  • Handle: RePEc:eee:trapol:v:128:y:2022:i:c:p:38-51
    DOI: 10.1016/j.tranpol.2022.08.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0967070X22002347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tranpol.2022.08.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reyes, Damián & Erera, Alan L. & Savelsbergh, Martin W.P., 2018. "Complexity of routing problems with release dates and deadlines," European Journal of Operational Research, Elsevier, vol. 266(1), pages 29-34.
    2. Bektas, Tolga & Laporte, Gilbert, 2011. "The Pollution-Routing Problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(8), pages 1232-1250, September.
    3. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "The Multi-Trip Vehicle Routing Problem with Time Windows and Release Dates," Transportation Science, INFORMS, vol. 50(2), pages 676-693, May.
    4. Said Dabia & Stefan Ropke & Tom van Woensel & Ton De Kok, 2013. "Branch and Price for the Time-Dependent Vehicle Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 47(3), pages 380-396, August.
    5. Lu, Zhijian & Shao, Shuai, 2016. "Impacts of government subsidies on pricing and performance level choice in Energy Performance Contracting: A two-step optimal decision model," Applied Energy, Elsevier, vol. 184(C), pages 1176-1183.
    6. Etemadnia, Hamideh & Goetz, Stephan J. & Canning, Patrick & Tavallali, Mohammad Sadegh, 2015. "Optimal wholesale facilities location within the fruit and vegetables supply chain with bimodal transportation options: An LP-MIP heuristic approach," European Journal of Operational Research, Elsevier, vol. 244(2), pages 648-661.
    7. P P Repoussis & C D Tarantilis & G Ioannou, 2007. "The open vehicle routing problem with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 355-367, March.
    8. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    9. Chao, Ching-Cheng & Yu, Po-Cheng, 2013. "Quantitative evaluation model of air cargo competitiveness and comparative analysis of major Asia-Pacific airports," Transport Policy, Elsevier, vol. 30(C), pages 318-326.
    10. Zhang, Anming, 2003. "Analysis of an international air-cargo hub: the case of Hong Kong," Journal of Air Transport Management, Elsevier, vol. 9(2), pages 123-138.
    11. Zhu, Zhenran & Zhang, Anming & Zhang, Yahua & Huang, Zhibin & Xu, Shiteng, 2019. "Measuring air connectivity between China and Australia," Journal of Transport Geography, Elsevier, vol. 74(C), pages 359-370.
    12. Kundu, Tanmoy & Sheu, Jiuh-Biing, 2019. "Analyzing the effect of government subsidy on shippers’ mode switching behavior in the Belt and Road strategic context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 175-202.
    13. Zhang, Yahua & Wang, Kun & Fu, Xiaowen, 2017. "Air transport services in regional Australia: Demand pattern, frequency choice and airport entry," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 472-489.
    14. Yan, Shangyao & Chen, Shin-Chin & Chen, Chia-Hung, 2006. "Air cargo fleet routing and timetable setting with multiple on-time demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(5), pages 409-430, September.
    15. Chen, Jen-Yi & Dimitrov, Stanko & Pun, Hubert, 2019. "The impact of government subsidy on supply Chains’ sustainability innovation," Omega, Elsevier, vol. 86(C), pages 42-58.
    16. Ulrich Derigs & Stefan Friederichs & Simon Schäfer, 2009. "A New Approach for Air Cargo Network Planning," Transportation Science, INFORMS, vol. 43(3), pages 370-380, August.
    17. Donehue, Paul & Baker, Douglas, 2012. "Remote, rural, and regional airports in Australia," Transport Policy, Elsevier, vol. 24(C), pages 232-239.
    18. Soysal, Mehmet & Bloemhof-Ruwaard, Jacqueline M. & Bektaş, Tolga, 2015. "The time-dependent two-echelon capacitated vehicle routing problem with environmental considerations," International Journal of Production Economics, Elsevier, vol. 164(C), pages 366-378.
    19. Cheng, Chun & Yang, Peng & Qi, Mingyao & Rousseau, Louis-Martin, 2017. "Modeling a green inventory routing problem with a heterogeneous fleet," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 97-112.
    20. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    21. Arnold, Pierre & Peeters, Dominique & Thomas, Isabelle, 2004. "Modelling a rail/road intermodal transportation system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(3), pages 255-270, May.
    22. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2014. "The fleet size and mix pollution-routing problem," Transportation Research Part B: Methodological, Elsevier, vol. 70(C), pages 239-254.
    23. David Tan & Kan Tsui, 2017. "Investigating causality in international air freight and business travel: The case of Australia," Urban Studies, Urban Studies Journal Limited, vol. 54(5), pages 1178-1193, April.
    24. Yuen, Andrew & Zhang, Anming & Hui, Yer Van & Leung, Lawrence C. & Fung, Michael, 2017. "Is developing air cargo airports in the hinterland the way of the future?," Journal of Air Transport Management, Elsevier, vol. 61(C), pages 15-25.
    25. Kritikos, Manolis N. & Ioannou, George, 2010. "The balanced cargo vehicle routing problem with time windows," International Journal of Production Economics, Elsevier, vol. 123(1), pages 42-51, January.
    26. Atefi, Reza & Salari, Majid & C. Coelho, Leandro & Renaud, Jacques, 2018. "The open vehicle routing problem with decoupling points," European Journal of Operational Research, Elsevier, vol. 265(1), pages 316-327.
    27. Resat, Hamdi G. & Turkay, Metin, 2015. "Design and operation of intermodal transportation network in the Marmara region of Turkey," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 16-33.
    28. Benjamin C. Shelbourne & Maria Battarra & Chris N. Potts, 2017. "The Vehicle Routing Problem with Release and Due Dates," INFORMS Journal on Computing, INFORMS, vol. 29(4), pages 705-723, November.
    29. Ghaderi, Abdolsalam & Burdett, Robert L., 2019. "An integrated location and routing approach for transporting hazardous materials in a bi-modal transportation network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 49-65.
    30. Archetti, Claudia & Feillet, Dominique & Speranza, M. Grazia, 2015. "Complexity of routing problems with release dates," European Journal of Operational Research, Elsevier, vol. 247(3), pages 797-803.
    31. Rezaei, Jafar & Hemmes, Alexander & Tavasszy, Lori, 2017. "Multi-criteria decision-making for complex bundling configurations in surface transportation of air freight," Journal of Air Transport Management, Elsevier, vol. 61(C), pages 95-105.
    32. Bontekoning, Y. M. & Macharis, C. & Trip, J. J., 2004. "Is a new applied transportation research field emerging?--A review of intermodal rail-truck freight transport literature," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(1), pages 1-34, January.
    33. Kelle, Peter & Song, Jinglu & Jin, Mingzhou & Schneider, Helmut & Claypool, Christopher, 2019. "Evaluation of operational and environmental sustainability tradeoffs in multimodal freight transportation planning," International Journal of Production Economics, Elsevier, vol. 209(C), pages 411-420.
    34. Gardiner, John & Ison, Stephen & Humphreys, Ian, 2005. "Factors influencing cargo airlines’ choice of airport: An international survey," Journal of Air Transport Management, Elsevier, vol. 11(6), pages 393-399.
    35. Li, Hongqi & Zhang, Lu & Lv, Tan & Chang, Xinyu, 2016. "The two-echelon time-constrained vehicle routing problem in linehaul-delivery systems," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 169-188.
    36. Baykasoğlu, Adil & Subulan, Kemal, 2016. "A multi-objective sustainable load planning model for intermodal transportation networks with a real-life application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 207-247.
    37. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    38. Zhang, Anming & Zhang, Yimin, 2002. "Issues on liberalization of air cargo services in international aviation," Journal of Air Transport Management, Elsevier, vol. 8(5), pages 275-287.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen, Lu & Ma, Chengle & Wang, Kai & Xiao, Liyang & Zhang, Wei, 2020. "Multi-depot multi-trip vehicle routing problem with time windows and release dates," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 135(C).
    2. Emna Marrekchi & Walid Besbes & Diala Dhouib & Emrah Demir, 2021. "A review of recent advances in the operations research literature on the green routing problem and its variants," Annals of Operations Research, Springer, vol. 304(1), pages 529-574, September.
    3. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    4. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    5. A. Mor & M. G. Speranza, 2022. "Vehicle routing problems over time: a survey," Annals of Operations Research, Springer, vol. 314(1), pages 255-275, July.
    6. Yuen, Andrew & Zhang, Anming & Hui, Yer Van & Leung, Lawrence C. & Fung, Michael, 2017. "Is developing air cargo airports in the hinterland the way of the future?," Journal of Air Transport Management, Elsevier, vol. 61(C), pages 15-25.
    7. Archetti, Claudia & Peirano, Lorenzo & Speranza, M. Grazia, 2022. "Optimization in multimodal freight transportation problems: A Survey," European Journal of Operational Research, Elsevier, vol. 299(1), pages 1-20.
    8. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    9. Xiao, Yiyong & Konak, Abdullah, 2016. "The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 146-166.
    10. Carlos A. Vega-Mejía & Jairo R. Montoya-Torres & Sardar M. N. Islam, 2019. "Consideration of triple bottom line objectives for sustainability in the optimization of vehicle routing and loading operations: a systematic literature review," Annals of Operations Research, Springer, vol. 273(1), pages 311-375, February.
    11. Ozgur Kabadurmus & Mehmet S. Erdogan, 2023. "A green vehicle routing problem with multi-depot, multi-tour, heterogeneous fleet and split deliveries: a mathematical model and heuristic approach," Journal of Combinatorial Optimization, Springer, vol. 45(3), pages 1-29, April.
    12. A. Mor & M. G. Speranza, 2020. "Vehicle routing problems over time: a survey," 4OR, Springer, vol. 18(2), pages 129-149, June.
    13. Ehmke, Jan Fabian & Campbell, Ann M. & Thomas, Barrett W., 2018. "Optimizing for total costs in vehicle routing in urban areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 242-265.
    14. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    15. Raeesi, Ramin & Zografos, Konstantinos G., 2020. "The electric vehicle routing problem with time windows and synchronised mobile battery swapping," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 101-129.
    16. Ling Shen & Fengming Tao & Songyi Wang, 2018. "Multi-Depot Open Vehicle Routing Problem with Time Windows Based on Carbon Trading," IJERPH, MDPI, vol. 15(9), pages 1-20, September.
    17. Yu, Yang & Wang, Sihan & Wang, Junwei & Huang, Min, 2019. "A branch-and-price algorithm for the heterogeneous fleet green vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 511-527.
    18. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    19. Onur Can Saka & Sinan Gürel & Tom Van Woensel, 2017. "Using cost change estimates in a local search heuristic for the pollution routing problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(2), pages 557-587, March.
    20. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:trapol:v:128:y:2022:i:c:p:38-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/30473/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.