IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v121y2025i5d10.1007_s11069-024-06979-2.html
   My bibliography  Save this article

Investigation of meteorological variables and associated extreme events over North-East India and its adjoining areas using high-resolution IMDAA reanalysis

Author

Listed:
  • Rohit Gautam

    (Dibrugarh University
    North Eastern Space Applications Centre)

  • Arup Borgohain

    (North Eastern Space Applications Centre)

  • Binita Pathak

    (Dibrugarh University
    Dibrugarh University)

  • Shyam Sundar Kundu

    (North Eastern Space Applications Centre)

  • Shiv Prasad Aggarwal

    (North Eastern Space Applications Centre)

Abstract

The study incorporates a first-time investigation of annual trends in precipitation, maximum and minimum temperature, and related extreme events across a set of 21 study sites of differing altitudes across North-East India and its contiguous areas employing reanalysis datasets of highest spatial and temporal resolution (0.12º, 1-hr) available for Indian subcontinent called Indian Monsoon Data Assimilation and Analysis (IMDAA). A total of ten precipitation and eleven temperature extremes, following the Expert Team on Climate Change Detection and Indices (ETCCDI), have been explored for trend identification at 5% and 1% significance levels combined with change point analysis using the Mann-Kendall (MK)/modified MK (mMK) tests and cumulative sum (CUSUM) charts, respectively. Noteworthy findings were revealed, where most stations exhibited significant annual increases in minimum temperatures (Tmin), along with a less pronounced trend in maximum temperatures (Tmax), while some stations showed decreasing annual precipitation. Results revealed predominant significant increasing trends in temperature indices across most of the locations with indices related to warmer nights showing greater significance. However, precipitation indices showed declining trends for most of the sites except for one location. Change points corresponding to minimum and maximum temperatures characterized by negative to positive shifts outnumbered those to precipitation, which showed rather opposite shifts across most of the locations. Predominant negative to positive shifts were observed in summer days (SU25), tropical nights (TR20), annual maximum of daily Tmin (TNx), warm days (TX90p), warm nights (TN90p), annual minimum of daily Tmax (TXn) and Tmin (TNn), whereas positive to negative in annual maximum of daily Tmax (TXx), cool days (TX10p), cool nights (TN10p) and diurnal temperature range (DTR) indicating a greater rise in warming scenario rather than cooling scenario. Precipitation indices generally shifted from positive to negative values, except for consecutive wet days (CWD), which indicates shifting precipitation patterns. The rise in extreme events poses a serious threat to the region and the continuously evolving pattern of climatic variables may have significant implications on human and natural ecosystems over this area of Indian subcontinent.

Suggested Citation

  • Rohit Gautam & Arup Borgohain & Binita Pathak & Shyam Sundar Kundu & Shiv Prasad Aggarwal, 2025. "Investigation of meteorological variables and associated extreme events over North-East India and its adjoining areas using high-resolution IMDAA reanalysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(5), pages 5149-5184, March.
  • Handle: RePEc:spr:nathaz:v:121:y:2025:i:5:d:10.1007_s11069-024-06979-2
    DOI: 10.1007/s11069-024-06979-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06979-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06979-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seung-Ki Min & Xuebin Zhang & Francis W. Zwiers & Gabriele C. Hegerl, 2011. "Human contribution to more-intense precipitation extremes," Nature, Nature, vol. 470(7334), pages 378-381, February.
    2. Xuebin Zhang & Lisa Alexander & Gabriele C. Hegerl & Philip Jones & Albert Klein Tank & Thomas C. Peterson & Blair Trewin & Francis W. Zwiers, 2011. "Indices for monitoring changes in extremes based on daily temperature and precipitation data," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(6), pages 851-870, November.
    3. M. Soorya Gayathri & S. Adarsh & K. Shehinamol & Zaina Nizamudeen & Mahima R. Lal, 2023. "Evaluation of change points and persistence of extreme climatic indices across India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2747-2759, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    2. Brennan, Timothy J., 2011. "Energy Efficiency Policy: Surveying the Puzzles," RFF Working Paper Series dp-11-27, Resources for the Future.
    3. -, 2018. "Climate Change in Central America: Potential Impacts and Public Policy Options," Sede Subregional de la CEPAL en México (Estudios e Investigaciones) 39150, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    4. Peng Jiang & Zhongbo Yu & Mahesh R. Gautam & Kumud Acharya, 2016. "The Spatiotemporal Characteristics of Extreme Precipitation Events in the Western United States," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4807-4821, October.
    5. Binglin Zhang & Songbai Song & Huimin Wang & Tianli Guo & Yibo Ding, 2025. "Evaluation of the performance of CMIP6 models in simulating extreme precipitation and its projected changes in global climate regions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 121(2), pages 1737-1763, January.
    6. Qiang Zhang & Jianfeng Li & Vijay Singh & Yungang Bai, 2012. "SPI-based evaluation of drought events in Xinjiang, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 481-492, October.
    7. Yi Yang & Hai Lin & Yi Xu & Hang Pan & Guangtao Dong & Jianping Tang, 2025. "Future projections of precipitation extremes over East Asia based on a deep learning downscaled CMIP6 high-resolution (0.1°) dataset," Climatic Change, Springer, vol. 178(1), pages 1-20, January.
    8. Abedifar, Pejman & Kashizadeh, Seyed Javad & Ongena, Steven, 2024. "Flood, farms and credit: The role of branch banking in the era of climate change," Journal of Corporate Finance, Elsevier, vol. 85(C).
    9. Ikefuji, Masako & Horii, Ryo, 2012. "Natural disasters in a two-sector model of endogenous growth," Journal of Public Economics, Elsevier, vol. 96(9-10), pages 784-796.
    10. Fabian Barthel & Eric Neumayer, 2012. "A trend analysis of normalized insured damage from natural disasters," Climatic Change, Springer, vol. 113(2), pages 215-237, July.
    11. Anil Aryal & Jun Magome & Hiroshi Ishidaira & Kazuyoshi Souma & Umesh Chaudhary, 2025. "Evaluating the extreme precipitation indices and their impacts in the Volta River Basin in West Africa from a nexus perspective," Sustainability Nexus Forum, Springer, vol. 33(1), pages 1-15, December.
    12. Yang Yang & Lili Ren & Mingxuan Wu & Hailong Wang & Fengfei Song & L. Ruby Leung & Xin Hao & Jiandong Li & Lei Chen & Huimin Li & Liangying Zeng & Yang Zhou & Pinya Wang & Hong Liao & Jing Wang & Zhen, 2022. "Abrupt emissions reductions during COVID-19 contributed to record summer rainfall in China," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    13. David Kabelka & David Kincl & Jan Vopravil & Jiří Brychta & Jan Bačovský, 2023. "Measuring of infiltration rate in different types of soil in the Czech Republic using a rainfall simulator," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 18(2), pages 128-137.
    14. Margot Hill Clarvis & Erin Bohensky & Masaru Yarime, 2015. "Can Resilience Thinking Inform Resilience Investments? Learning from Resilience Principles for Disaster Risk Reduction," Sustainability, MDPI, vol. 7(7), pages 1-19, July.
    15. Mark D. Risser & William D. Collins & Michael F. Wehner & Travis A. O’Brien & Huanping Huang & Paul A. Ullrich, 2024. "Anthropogenic aerosols mask increases in US rainfall by greenhouse gases," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    16. Derartu Wodajo Sedata & Diriba Korecha Dadi & Weyessa Garedew Terefe & Tadesse Terefe Zeleke, 2025. "Smallholder farmers’ vulnerability to climate extremes in west and southwest Showa zones, Ethiopia," Climatic Change, Springer, vol. 178(2), pages 1-24, February.
    17. Jinxin Zhu & Xuerou Weng & Bing Guo & Xueting Zeng & Cong Dong, 2023. "Investigating Extreme Snowfall Changes in China Based on an Ensemble of High-Resolution Regional Climate Models," Sustainability, MDPI, vol. 15(5), pages 1-17, February.
    18. Junyao Zhang & Ning Yao & Yi Li & Feng Li & Bakhtiyor Pulatov, 2022. "Effects of Different Socioeconomic Development Levels on Extreme Precipitation Events in Mainland China," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    19. Ward, Patrick & Shively, Gerald, 2012. "Vulnerability, Income Growth and Climate Change," World Development, Elsevier, vol. 40(5), pages 916-927.
    20. Ouyang, Mingwei & Cao, Yan, 2023. "Utilizations of reaction exothermic heat to compensate the cost of the permanent CO2 sequestration through the geological mineral CO2 carbonation," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:121:y:2025:i:5:d:10.1007_s11069-024-06979-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.