IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i15d10.1007_s11069-024-06779-8.html
   My bibliography  Save this article

Projection of future non-stationary intensity-duration-frequency curves using the pooled CMIP6 climate models

Author

Listed:
  • Ameneh Mianabadi

    (Graduate University of Advanced Technology)

  • Mohammad Mehdi Bateni

    (University School for Advanced Studies Pavia)

  • Morteza Babaei

    (University of Tromsø)

Abstract

Extreme precipitation events can cause severe floods that pose significant risks to human lives, properties, and ecosystems. Therefore, understanding how climate change may affect the characteristics of these events is crucial for developing effective adaptation and mitigation strategies. In this study, we investigated the effect of climate change on the extreme characteristics through the concept of Intensity-Duration-Frequency curves. For this purpose, annual maximum precipitation series derived from five climate models from Coupled Model Intercomparison Project phase 6 were used to develop the historical (1965–2014) and future (2051–2100) curves for 12 major cities in Iran. By applying the pooling data method, the changes in intensity and frequency of the extreme precipitation with duration of 24-h, 48-h, and 72-h were assessed for three scenarios of SSP1-2.6, SSP2-4.5, and SSP3-7.0. The results indicate that most stations will experience more intense (up to 20%) and frequent (up to 8 times) extreme precipitation events under projected climate change scenarios, especially for the SSP3-7.0 scenario. However, these results varied across cities. The findings of this study provide valuable insights into the potential impacts of climate change on flood risk management in Iran and suggest the need for appropriate adaptive strategies.

Suggested Citation

  • Ameneh Mianabadi & Mohammad Mehdi Bateni & Morteza Babaei, 2024. "Projection of future non-stationary intensity-duration-frequency curves using the pooled CMIP6 climate models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(15), pages 14311-14332, December.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:15:d:10.1007_s11069-024-06779-8
    DOI: 10.1007/s11069-024-06779-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06779-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06779-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Stephane Hallegatte & Colin Green & Robert J. Nicholls & Jan Corfee-Morlot, 2013. "Future flood losses in major coastal cities," Nature Climate Change, Nature, vol. 3(9), pages 802-806, September.
    2. M. T. Vu & V. S. Raghavan & S.-Y. Liong, 2017. "Deriving short-duration rainfall IDF curves from a regional climate model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1877-1891, February.
    3. V. Kharin & F. Zwiers & X. Zhang & M. Wehner, 2013. "Changes in temperature and precipitation extremes in the CMIP5 ensemble," Climatic Change, Springer, vol. 119(2), pages 345-357, July.
    4. E. M. Fischer & R. Knutti, 2016. "Observed heavy precipitation increase confirms theory and early models," Nature Climate Change, Nature, vol. 6(11), pages 986-991, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jang Hyun Sung & Minsung Kwon & Jong-June Jeon & Seung Beom Seo, 2019. "A Projection of Extreme Precipitation Based on a Selection of CMIP5 GCMs over North Korea," Sustainability, MDPI, vol. 11(7), pages 1-17, April.
    2. Hefei Huang & Huijuan Cui & Quansheng Ge, 2021. "Assessment of potential risks induced by increasing extreme precipitation under climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(2), pages 2059-2079, September.
    3. Wei Zhang & Gabriele Villarini, 2017. "Heavy precipitation is highly sensitive to the magnitude of future warming," Climatic Change, Springer, vol. 145(1), pages 249-257, November.
    4. Wei Zhang & Gabriele Villarini & Michael Wehner, 2019. "Contrasting the responses of extreme precipitation to changes in surface air and dew point temperatures," Climatic Change, Springer, vol. 154(1), pages 257-271, May.
    5. Haoyang Du & Chen Zhou & Haoqing Tang & Xiaolong Jin & Dengshuai Chen & Penghui Jiang & Manchun Li, 2021. "Simulation and estimation of future precipitation changes in arid regions: a case study of Xinjiang, Northwest China," Climatic Change, Springer, vol. 167(3), pages 1-21, August.
    6. Abinash Bhattachan & Matthew D. Jurjonas & Priscilla R. Morris & Paul J. Taillie & Lindsey S. Smart & Ryan E. Emanuel & Erin L. Seekamp, 2019. "Linking residential saltwater intrusion risk perceptions to physical exposure of climate change impacts in rural coastal communities of North Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1277-1295, July.
    7. Denis Maragno & Michele Dalla Fontana & Francesco Musco, 2020. "Mapping Heat Stress Vulnerability and Risk Assessment at the Neighborhood Scale to Drive Urban Adaptation Planning," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    8. Ping Lan & Li Guo & Yaling Zhang & Guanghua Qin & Xiaodong Li & Carlos R. Mello & Elizabeth W. Boyer & Yehui Zhang & Bihang Fan, 2024. "Updating probable maximum precipitation for Hong Kong under intensifying extreme precipitation events," Climatic Change, Springer, vol. 177(2), pages 1-20, February.
    9. Allan Beltrán & David Maddison & Robert J. R. Elliott, 2018. "Assessing the Economic Benefits of Flood Defenses: A Repeat‐Sales Approach," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2340-2367, November.
    10. N. Zhang & H. Huang, 2018. "Assessment of world disaster severity processed by Gaussian blur based on large historical data: casualties as an evaluating indicator," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 173-187, May.
    11. Céline Grislain-Letrémy & Bertrand Villeneuve, 2019. "Natural disasters, land-use, and insurance," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 44(1), pages 54-86, March.
    12. Fabian Quichimbo-Miguitama & David Matamoros & Leticia Jiménez & Pablo Quichimbo-Miguitama, 2022. "Influence of Low-Impact Development in Flood Control: A Case Study of the Febres Cordero Stormwater System of Guayaquil (Ecuador)," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    13. Martin Vezér & Alexander Bakker & Klaus Keller & Nancy Tuana, 2018. "Epistemic and ethical trade-offs in decision analytical modelling," Climatic Change, Springer, vol. 147(1), pages 1-10, March.
    14. Shuyu Yang & Jiaju Lin & Xiongzhi Xue, 2024. "Climate Change May Increase the Impact of Coastal Flooding on Carbon Storage in China’s Coastal Terrestrial Ecosystems," Land, MDPI, vol. 13(11), pages 1-21, November.
    15. Sadie J. Ryan & Anna M. Stewart-Ibarra & Eunice Ordóñez-Enireb & Winnie Chu & Julia L. Finkelstein & Christine A. King & Luis E. Escobar & Christina Lupone & Froilan Heras & Erica Tauzer & Egan Waggon, 2018. "Spatiotemporal Variation in Environmental Vibrio cholerae in an Estuary in Southern Coastal Ecuador," IJERPH, MDPI, vol. 15(3), pages 1-13, March.
    16. Diana R. Gergel & Bart Nijssen & John T. Abatzoglou & Dennis P. Lettenmaier & Matt R. Stumbaugh, 2017. "Effects of climate change on snowpack and fire potential in the western USA," Climatic Change, Springer, vol. 141(2), pages 287-299, March.
    17. Ke Wang & Yongsheng Yang & Genserik Reniers & Quanyi Huang, 2021. "A study into the spatiotemporal distribution of typhoon storm surge disasters in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1237-1256, August.
    18. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    19. Matthias Garschagen & Gusti Ayu Ketut Surtiari & Mostapha Harb, 2018. "Is Jakarta’s New Flood Risk Reduction Strategy Transformational?," Sustainability, MDPI, vol. 10(8), pages 1-18, August.
    20. Mark Zandvoort & Nora Kooijmans & Paul Kirshen & Adri van den Brink, 2019. "Designing with Pathways: A Spatial Design Approach for Adaptive and Sustainable Landscapes," Sustainability, MDPI, vol. 11(3), pages 1-24, January.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:15:d:10.1007_s11069-024-06779-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.