IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v177y2024i2d10.1007_s10584-023-03663-5.html
   My bibliography  Save this article

Updating probable maximum precipitation for Hong Kong under intensifying extreme precipitation events

Author

Listed:
  • Ping Lan

    (Sichuan University)

  • Li Guo

    (Sichuan University)

  • Yaling Zhang

    (Sichuan University)

  • Guanghua Qin

    (Sichuan University)

  • Xiaodong Li

    (Sichuan University)

  • Carlos R. Mello

    (Federal University of Lavras)

  • Elizabeth W. Boyer

    (Penn State University)

  • Yehui Zhang

    (Nanjing University of Information Science & Technology)

  • Bihang Fan

    (Sichuan University)

Abstract

Probable maximum precipitation (PMP) is defined as the greatest depth of precipitation that is physically possible over a particular location after a storm. Changes in the frequency and intensity of precipitation extremes associated with climate change may alter established PMP values, calling for updated approaches for estimating PMP to inform water resources management. In this study, we established a framework to update PMP for Hong Kong, a major coastal metropolis in south China where precipitation extremes are intensifying in a changing climate. The methods explored are adaptations of a traditional statistical method, a local storm moisture maximization method, and a storm transposition method. As inputs to the associated models, (1) data from annual maximum rainfall series at various durations (4-, 6-, 12-, 24-h) from 1884 to 2015 in Hong Kong and its surrounding regions, Taiwan; (2) dewpoint data at an hourly resolution spanning from 1984 to 2015 in Hong Kong; and (3) hourly rainfall and dewpoint data observed during three major typhoons in Taiwan were incorporated. Although our data were available until 2015, it is worth noting that no more recent extreme precipitation events have surpassed the values recorded during the study period. Finally, we present a new dataset of the updated point- and area-scale PMP values for Hong Kong for multiple durations (4-, 6-, 12-, 24-h). These updated values were assessed and verified to be reasonable through comparisons with regional storm records, PMP estimates from adjacent areas, and historical PMP values for Hong Kong. The updated PMP values for Hong Kong can serve as a reference for the design of hydraulic structures and preparation for extreme precipitation events. Further, the proposed framework for updating PMP values can be transferred to other coastal metropolises for flood design.

Suggested Citation

  • Ping Lan & Li Guo & Yaling Zhang & Guanghua Qin & Xiaodong Li & Carlos R. Mello & Elizabeth W. Boyer & Yehui Zhang & Bihang Fan, 2024. "Updating probable maximum precipitation for Hong Kong under intensifying extreme precipitation events," Climatic Change, Springer, vol. 177(2), pages 1-20, February.
  • Handle: RePEc:spr:climat:v:177:y:2024:i:2:d:10.1007_s10584-023-03663-5
    DOI: 10.1007/s10584-023-03663-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-023-03663-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-023-03663-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephane Hallegatte & Colin Green & Robert J. Nicholls & Jan Corfee-Morlot, 2013. "Future flood losses in major coastal cities," Nature Climate Change, Nature, vol. 3(9), pages 802-806, September.
    2. Babatunde J. Abiodun & Jimmy Adegoke & Abayomi A. Abatan & Chidi A. Ibe & Temitope S. Egbebiyi & Francois Engelbrecht & Izidine Pinto, 2017. "Potential impacts of climate change on extreme precipitation over four African coastal cities," Climatic Change, Springer, vol. 143(3), pages 399-413, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abinash Bhattachan & Matthew D. Jurjonas & Priscilla R. Morris & Paul J. Taillie & Lindsey S. Smart & Ryan E. Emanuel & Erin L. Seekamp, 2019. "Linking residential saltwater intrusion risk perceptions to physical exposure of climate change impacts in rural coastal communities of North Carolina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1277-1295, July.
    2. Allan Beltrán & David Maddison & Robert J. R. Elliott, 2018. "Assessing the Economic Benefits of Flood Defenses: A Repeat‐Sales Approach," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2340-2367, November.
    3. Céline Grislain-Letrémy & Bertrand Villeneuve, 2019. "Natural disasters, land-use, and insurance," The Geneva Papers on Risk and Insurance Theory, Springer;International Association for the Study of Insurance Economics (The Geneva Association), vol. 44(1), pages 54-86, March.
    4. Martin Vezér & Alexander Bakker & Klaus Keller & Nancy Tuana, 2018. "Epistemic and ethical trade-offs in decision analytical modelling," Climatic Change, Springer, vol. 147(1), pages 1-10, March.
    5. Adriana Kocornik-Mina & Thomas K. J. McDermott & Guy Michaels & Ferdinand Rauch, 2020. "Flooded Cities," American Economic Journal: Applied Economics, American Economic Association, vol. 12(2), pages 35-66, April.
    6. Weijiang Li & Jiahong Wen & Bo Xu & Xiande Li & Shiqiang Du, 2018. "Integrated Assessment of Economic Losses in Manufacturing Industry in Shanghai Metropolitan Area Under an Extreme Storm Flood Scenario," Sustainability, MDPI, vol. 11(1), pages 1-19, December.
    7. William G. Bennett & Harshinie Karunarathna & Yunqing Xuan & Muhammad S. B. Kusuma & Mohammad Farid & Arno A. Kuntoro & Harkunti P. Rahayu & Benedictus Kombaitan & Deni Septiadi & Tri N. A. Kesuma & R, 2023. "Modelling compound flooding: a case study from Jakarta, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 277-305, August.
    8. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    9. Reguero, Borja G. & Beck, Michael W. & Schmid, David & Stadtmüller, Daniel & Raepple, Justus & Schüssele, Stefan & Pfliegner, Kerstin, 2020. "Financing coastal resilience by combining nature-based risk reduction with insurance," Ecological Economics, Elsevier, vol. 169(C).
    10. Yus Budiyono & Jeroen Aerts & JanJaap Brinkman & Muh Marfai & Philip Ward, 2015. "Flood risk assessment for delta mega-cities: a case study of Jakarta," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 389-413, January.
    11. Karen T. Lourdes & Chris N. Gibbins & Perrine Hamel & Ruzana Sanusi & Badrul Azhar & Alex M. Lechner, 2021. "A Review of Urban Ecosystem Services Research in Southeast Asia," Land, MDPI, vol. 10(1), pages 1-21, January.
    12. Julien Boulange & Yukiko Hirabayashi & Masahiro Tanoue & Toshinori Yamada, 2023. "Quantitative evaluation of flood damage methodologies under a portfolio of adaptation scenarios," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1855-1879, September.
    13. Mercy J. Borbor-Cordova & Geremy Ger & Angel A. Valdiviezo-Ajila & Mijail Arias-Hidalgo & David Matamoros & Indira Nolivos & Gonzalo Menoscal-Aldas & Federica Valle & Alessandro Pezzoli & Maria del Pi, 2020. "An Operational Framework for Urban Vulnerability to Floods in the Guayas Estuary Region: The Duran Case Study," Sustainability, MDPI, vol. 12(24), pages 1-23, December.
    14. Jim Gower, 2015. "A sea surface height control dam at the Strait of Gibraltar," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 2109-2120, September.
    15. Jiake Li & Jiayu Gao & Ning Li & Yutong Yao & Yishuo Jiang, 2023. "Risk Assessment and Management Method of Urban Flood Disaster," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2001-2018, March.
    16. Ibidun Adelekan & Adeniyi Asiyanbi, 2016. "Flood risk perception in flood-affected communities in Lagos, Nigeria," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 445-469, January.
    17. Maria Fabrizia Clemente, 2022. "The Future Impacts of ESL Events in Euro-Mediterranean Coastal Cities: The Coast-RiskBySea Model to Assess the Potential Economic Damages in Naples, Marseille and Barcelona," Sustainability, MDPI, vol. 14(16), pages 1-22, August.
    18. Amar Causevic & Matthew LoCastro & Dharish David & Sujeetha Selvakkumaran & Ã…sa Gren, 2021. "Financing resilience efforts to confront future urban and sea-level rise flooding: Are coastal megacities in Association of Southeast Asian Nations doing enough?," Environment and Planning B, , vol. 48(5), pages 989-1010, June.
    19. Faith Ka Shun Chan & Xinbing Gu & Yunfei Qi & Dimple Thadani & Yongqin David Chen & Xiaohui Lu & Lei Li & James Griffiths & Fangfang Zhu & Jianfeng Li & Wendy Y. Chen, 2022. "Lessons learnt from Typhoons Fitow and In-Fa: implications for improving urban flood resilience in Asian Coastal Cities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 2397-2404, February.
    20. Tian Liu & Peijun Shi & Jian Fang, 2022. "Spatiotemporal variation in global floods with different affected areas and the contribution of influencing factors to flood-induced mortality (1985–2019)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(3), pages 2601-2625, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:177:y:2024:i:2:d:10.1007_s10584-023-03663-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.