IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i15d10.1007_s11069-024-06748-1.html
   My bibliography  Save this article

A novel seismic vulnerability assessment for the urban roadway by using interval valued fermatean fuzzy analytical hierarchy process

Author

Listed:
  • Ahmet Kaan Yildirim

    (İstanbul Nişantaşı University
    İstanbul University-Cerrahpasa)

  • Bahar Yalcin Kavus

    (Istanbul Topkapi University
    Yildiz Technical University)

  • Tolga Kudret Karaca

    (Istanbul Topkapi University)

  • İlknur Bozbey

    (İstanbul University-Cerrahpasa)

  • Alev Taskin

    (Yildiz Technical University
    Azerbaijan State University of Economics (UNEC))

Abstract

Seismic activity poses significant challenges to urban road infrastructure, often resulting in road closures due to the combined effects of damaged buildings and affected road networks. In contrast, the resilience of roads is crucially important for all kinds of relief activities after an earthquake in this context, this study outlines a methodological framework for assessing the vulnerability of urban road infrastructure to seismic activity. By integrating various criteria within an Interval-valued Fermatean fuzzy Analytic Hierarchy Process framework, the approach offers a comprehensive analysis of vulnerability, considering both quantitative and qualitative factors. This method is a weighting method that has not been used before in MCDM studies in the field of earthquakes. A risk factor is obtained for each road section by using this comprehensive analysis of the vulnerability. This integrated approach considers the interplay between damaged buildings, road networks, and disaster response mechanisms, thereby enhancing the ability to anticipate and respond to seismic events effectively. The study conducts a case study in Istanbul, Turkey, a seismic-prone area, to validate the effectiveness of the proposed methodology. Key findings indicate that the approach can identify and quantify vulnerabilities within the transport network, enabling the identification of high-risk areas for necessary mitigation measures. Moreover, the methodology’s validity is confirmed through a validation study in Gölbaşı district, Adıyaman, Türkiye, which experienced severe damage during earthquakes on 6 February 2023 earthquakes. By providing a structured and comprehensive vulnerability analysis, the research aims to contribute to the resilience of urban infrastructure, particularly in earthquake-prone regions.

Suggested Citation

  • Ahmet Kaan Yildirim & Bahar Yalcin Kavus & Tolga Kudret Karaca & İlknur Bozbey & Alev Taskin, 2024. "A novel seismic vulnerability assessment for the urban roadway by using interval valued fermatean fuzzy analytical hierarchy process," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(15), pages 13811-13834, December.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:15:d:10.1007_s11069-024-06748-1
    DOI: 10.1007/s11069-024-06748-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06748-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06748-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zundong Zhang & Mengyao Zhu & Jeff Ban & Yifan Zhang, 2020. "A verification method for identifying critical segments considering highly correlated characteristics of traffic flow," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 31(03), pages 1-13, February.
    2. Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
    3. Balijepalli, Chandra & Oppong, Olivia, 2014. "Measuring vulnerability of road network considering the extent of serviceability of critical road links in urban areas," Journal of Transport Geography, Elsevier, vol. 39(C), pages 145-155.
    4. Ahmad Mohamad El-Maissi & Sotirios A. Argyroudis & Fadzli Mohamed Nazri, 2020. "Seismic Vulnerability Assessment Methodologies for Roadway Assets and Networks: A State-of-the-Art Review," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
    5. Zeynep Önder & Vedia Dökmeci & Berna Keskin, 2004. "The Impact of Public Perception of Earthquake Risk on Istanbul's Housing Market," Journal of Real Estate Literature, Taylor & Francis Journals, vol. 12(2), pages 181-194, January.
    6. Jian-qiang Wang & Juan-juan Peng & Hong-yu Zhang & Tao Liu & Xiao-hong Chen, 2015. "An Uncertain Linguistic Multi-criteria Group Decision-Making Method Based on a Cloud Model," Group Decision and Negotiation, Springer, vol. 24(1), pages 171-192, January.
    7. Michael Taylor & Somenahalli Sekhar & Glen D'Este, 2006. "Application of Accessibility Based Methods for Vulnerability Analysis of Strategic Road Networks," Networks and Spatial Economics, Springer, vol. 6(3), pages 267-291, September.
    8. Panjamani Anbazhagan & Sushma Srinivas & Deepu Chandran, 2012. "Classification of road damage due to earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 425-460, January.
    9. Argyroudis, Sotirios A. & Mitoulis, Stergios Α. & Winter, Mike G. & Kaynia, Amir M., 2019. "Fragility of transport assets exposed to multiple hazards: State-of-the-art review toward infrastructural resilience," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmad Mohamad El-Maissi & Sotirios A. Argyroudis & Fadzli Mohamed Nazri, 2020. "Seismic Vulnerability Assessment Methodologies for Roadway Assets and Networks: A State-of-the-Art Review," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
    2. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    3. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    4. Victor Cantillo & Luis F. Macea & Miguel Jaller, 2019. "Assessing Vulnerability of Transportation Networks for Disaster Response Operations," Networks and Spatial Economics, Springer, vol. 19(1), pages 243-273, March.
    5. Allan Peñafiel Mera & Chandra Balijepalli, 2020. "Towards improving resilience of cities: an optimisation approach to minimising vulnerability to disruption due to natural disasters under budgetary constraints," Transportation, Springer, vol. 47(4), pages 1809-1842, August.
    6. Amir Al Hamdi Redzuan & Rozana Zakaria & Aznah Nor Anuar & Eeydzah Aminudin & Norbazlan Mohd Yusof, 2022. "Road Network Vulnerability Based on Diversion Routes to Reconnect Disrupted Road Segments," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    7. Martinez-Pastor, Beatriz & Nogal, Maria & O’Connor, Alan & Teixeira, Rui, 2022. "Identifying critical and vulnerable links: A new approach using the Fisher information matrix," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
    8. Akbarzadeh, Meisam & Salehi Reihani, Sayed Farzin & Samani, Keivan Aghababaei, 2019. "Detecting critical links of urban networks using cluster detection methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 288-298.
    9. Bíl, Michal & Vodák, Rostislav & Kubeček, Jan & Bílová, Martina & Sedoník, Jiří, 2015. "Evaluating road network damage caused by natural disasters in the Czech Republic between 1997 and 2010," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 90-103.
    10. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.
    11. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    12. Masiero, Lorenzo & Maggi, Rico, 2012. "Estimation of indirect cost and evaluation of protective measures for infrastructure vulnerability: A case study on the transalpine transport corridor," Transport Policy, Elsevier, vol. 20(C), pages 13-21.
    13. Erik Jenelius, 2010. "User inequity implications of road network vulnerability," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 2(3), pages 57-73.
    14. Jenelius, Erik & Mattsson, Lars-Göran, 2012. "Road network vulnerability analysis of area-covering disruptions: A grid-based approach with case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 746-760.
    15. Maria Carolina Rogelis, 2015. "Flood Risk in Road Networks," World Bank Publications - Reports 22980, The World Bank Group.
    16. Daniel (Jian) Sun & Yuhan Zhao & Qing-Chang Lu, 2015. "Vulnerability Analysis of Urban Rail Transit Networks: A Case Study of Shanghai, China," Sustainability, MDPI, vol. 7(6), pages 1-18, May.
    17. Li, Ming & Yu, Xinrui & Fei, Jiahao & Jin, Xiaoyong & Bai, Wei & Yao, Zhihong, 2024. "Regional traffic congestion coordination control based on critical links," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 647(C).
    18. Aghababaei, Mohammad T. (Siavash) & Costello, Seosamh B. & Ranjitkar, Prakash, 2021. "Measures to evaluate post-disaster trip resilience on road networks," Journal of Transport Geography, Elsevier, vol. 95(C).
    19. Bell, Michael G.H. & Kurauchi, Fumitaka & Perera, Supun & Wong, Walter, 2017. "Investigating transport network vulnerability by capacity weighted spectral analysis," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 251-266.
    20. Bagloee, Saeed Asadi & Sarvi, Majid & Wolshon, Brian & Dixit, Vinayak, 2017. "Identifying critical disruption scenarios and a global robustness index tailored to real life road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 60-81.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:15:d:10.1007_s11069-024-06748-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.