IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v515y2019icp288-298.html
   My bibliography  Save this article

Detecting critical links of urban networks using cluster detection methods

Author

Listed:
  • Akbarzadeh, Meisam
  • Salehi Reihani, Sayed Farzin
  • Samani, Keivan Aghababaei

Abstract

Clusters of a network are sets of nodes that are strongly connected to each other but weakly connected to the rest of the network. A network link is considered critical if loss of it significantly diminishes the integrity or functionality of the network. Therefore, networks are most vulnerable to losing their critical links. Integrity of the network is measured by the relative size of the giant component. The functionality of the network is measured by the temporal network efficiency. Temporal network efficiency is the sum of reciprocal of the time it takes to traverse between node pairs of the network and is more suitable in transportation networks than the well-known network efficiency which is based on the distance. It is shown in this paper that links connecting neighboring clusters are the most critical links of the network in comparison to links with highest congestion, flows, or betweennesses. Second most important metric is found to be betweenness of links. Flow, and congestion (ratio of link flow and its capacity) are third and fourth, respectively. It was also found that the links located on the borders of communities are not those with highest values of flows, congestion, or betweenness. Infomap was found to be the most suitable cluster detection method for the urban network under study.

Suggested Citation

  • Akbarzadeh, Meisam & Salehi Reihani, Sayed Farzin & Samani, Keivan Aghababaei, 2019. "Detecting critical links of urban networks using cluster detection methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 288-298.
  • Handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:288-298
    DOI: 10.1016/j.physa.2018.09.170
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437118312986
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2018.09.170?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Taylor & Somenahalli Sekhar & Glen D'Este, 2006. "Application of Accessibility Based Methods for Vulnerability Analysis of Strategic Road Networks," Networks and Spatial Economics, Springer, vol. 6(3), pages 267-291, September.
    2. Berdica, Katja, 2002. "An introduction to road vulnerability: what has been done, is done and should be done," Transport Policy, Elsevier, vol. 9(2), pages 117-127, April.
    3. Balijepalli, Chandra & Oppong, Olivia, 2014. "Measuring vulnerability of road network considering the extent of serviceability of critical road links in urban areas," Journal of Transport Geography, Elsevier, vol. 39(C), pages 145-155.
    4. Knoop, Victor L. & Snelder, Maaike & van Zuylen, Henk J. & Hoogendoorn, Serge P., 2012. "Link-level vulnerability indicators for real-world networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(5), pages 843-854.
    5. Jenelius, Erik & Petersen, Tom & Mattsson, Lars-Göran, 2006. "Importance and exposure in road network vulnerability analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(7), pages 537-560, August.
    6. Bell, Michael G.H. & Kurauchi, Fumitaka & Perera, Supun & Wong, Walter, 2017. "Investigating transport network vulnerability by capacity weighted spectral analysis," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 251-266.
    7. El-Rashidy, Rawia Ahmed & Grant-Muller, Susan M., 2014. "An assessment method for highway network vulnerability," Journal of Transport Geography, Elsevier, vol. 34(C), pages 34-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Liye & Xiao, Zhe & Ren, Shen & Qin, Zheng & Goh, Rick Siow Mong & Song, Jie, 2022. "Measuring the vulnerability of bike-sharing system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 163(C), pages 353-369.
    2. Ortega, Emilio & Martín, Belén & Aparicio, Ángel, 2020. "Identification of critical sections of the Spanish transport system due to climate scenarios," Journal of Transport Geography, Elsevier, vol. 84(C).
    3. Lin, Pengfei & Weng, Jiancheng & Fu, Yu & Alivanistos, Dimitrios & Yin, Baocai, 2020. "Study on the topology and dynamics of the rail transit network based on automatic fare collection data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. Almotahari, Amirmasoud & Yazici, Anil, 2021. "A computationally efficient metric for identification of critical links in large transportation networks," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    5. Yu, Hui & Chen, LuYuan & Yao, JingTao & Wang, XingNan, 2019. "A three-way clustering method based on an improved DBSCAN algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    6. Johan Rose Santos & Nur Diana Safitri & Maya Safira & Varun Varghese & Makoto Chikaraishi, 2021. "Road network vulnerability and city-level characteristics: A nationwide comparative analysis of Japanese cities," Environment and Planning B, , vol. 48(5), pages 1091-1107, June.
    7. Lu, Yanchi & Huang, Dan & Liu, Yaolin & Zhang, Yan & Jing, Ying & Chen, Huiting & Zhang, Ziyi & Liu, Yanfang, 2024. "Exploring the optimization and management methods of ecological networks based on the cluster mode: A case study of Wuhan Metropolis, China," Land Use Policy, Elsevier, vol. 137(C).
    8. Elisa Frutos Bernal & Angel Martín del Rey, 2019. "Study of the Structural and Robustness Characteristics of Madrid Metro Network," Sustainability, MDPI, vol. 11(12), pages 1-24, June.
    9. Jin, Kun & Wang, Wei & Li, Xinran & Hua, Xuedong & Chen, Siyuan & Qin, Shaoyang, 2022. "Identifying the critical road combination in urban roads network under multiple disruption scenarios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Tao & Rong, Lili & Yan, Kesheng, 2019. "Vulnerability analysis and critical area identification of public transport system: A case of high-speed rail and air transport coupling system in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 127(C), pages 55-70.
    2. Allan Peñafiel Mera & Chandra Balijepalli, 2020. "Towards improving resilience of cities: an optimisation approach to minimising vulnerability to disruption due to natural disasters under budgetary constraints," Transportation, Springer, vol. 47(4), pages 1809-1842, August.
    3. Mengying Cui & David Levinson, 2018. "Accessibility analysis of risk severity," Transportation, Springer, vol. 45(4), pages 1029-1050, July.
    4. Gonçalves, L.A.P.J. & Ribeiro, P.J.G., 2020. "Resilience of urban transportation systems. Concept, characteristics, and methods," Journal of Transport Geography, Elsevier, vol. 85(C).
    5. Martinez-Pastor, Beatriz & Nogal, Maria & O’Connor, Alan & Teixeira, Rui, 2022. "Identifying critical and vulnerable links: A new approach using the Fisher information matrix," International Journal of Critical Infrastructure Protection, Elsevier, vol. 39(C).
    6. Richard Connors & David Watling, 2015. "Assessing the Demand Vulnerability of Equilibrium Traffic Networks via Network Aggregation," Networks and Spatial Economics, Springer, vol. 15(2), pages 367-395, June.
    7. Bucar, Raif C.B. & Hayeri, Yeganeh M., 2020. "Quantitative assessment of the impacts of disruptive precipitation on surface transportation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    8. Aghababaei, Mohammad T. (Siavash) & Costello, Seosamh B. & Ranjitkar, Prakash, 2021. "Measures to evaluate post-disaster trip resilience on road networks," Journal of Transport Geography, Elsevier, vol. 95(C).
    9. Bell, Michael G.H. & Kurauchi, Fumitaka & Perera, Supun & Wong, Walter, 2017. "Investigating transport network vulnerability by capacity weighted spectral analysis," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 251-266.
    10. Bagloee, Saeed Asadi & Sarvi, Majid & Wolshon, Brian & Dixit, Vinayak, 2017. "Identifying critical disruption scenarios and a global robustness index tailored to real life road networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 60-81.
    11. Victor Cantillo & Luis F. Macea & Miguel Jaller, 2019. "Assessing Vulnerability of Transportation Networks for Disaster Response Operations," Networks and Spatial Economics, Springer, vol. 19(1), pages 243-273, March.
    12. Pan, Shouzheng & Yan, Hai & He, Jia & He, Zhengbing, 2021. "Vulnerability and resilience of transportation systems: A recent literature review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    13. Muriel-Villegas, Juan E. & Alvarez-Uribe, Karla C. & Patiño-Rodríguez, Carmen E. & Villegas, Juan G., 2016. "Analysis of transportation networks subject to natural hazards – Insights from a Colombian case," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 151-165.
    14. Juan Carlos García-Palomares & Javier Gutiérrez & Juan Carlos Martín & Borja Moya-Gómez, 2018. "An analysis of the Spanish high capacity road network criticality," Transportation, Springer, vol. 45(4), pages 1139-1159, July.
    15. Amir Al Hamdi Redzuan & Rozana Zakaria & Aznah Nor Anuar & Eeydzah Aminudin & Norbazlan Mohd Yusof, 2022. "Road Network Vulnerability Based on Diversion Routes to Reconnect Disrupted Road Segments," Sustainability, MDPI, vol. 14(4), pages 1-22, February.
    16. Balijepalli, Chandra & Oppong, Olivia, 2014. "Measuring vulnerability of road network considering the extent of serviceability of critical road links in urban areas," Journal of Transport Geography, Elsevier, vol. 39(C), pages 145-155.
    17. Ahmad Mohamad El-Maissi & Sotirios A. Argyroudis & Fadzli Mohamed Nazri, 2020. "Seismic Vulnerability Assessment Methodologies for Roadway Assets and Networks: A State-of-the-Art Review," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
    18. Gu, Yu & Chen, Anthony & Xu, Xiangdong, 2023. "Measurement and ranking of important link combinations in the analysis of transportation network vulnerability envelope buffers under multiple-link disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 118-144.
    19. Demirel, Hande & Kompil, Mert & Nemry, Françoise, 2015. "A framework to analyze the vulnerability of European road networks due to Sea-Level Rise (SLR) and sea storm surges," Transportation Research Part A: Policy and Practice, Elsevier, vol. 81(C), pages 62-76.
    20. Gu, Yu & Fu, Xiao & Liu, Zhiyuan & Xu, Xiangdong & Chen, Anthony, 2020. "Performance of transportation network under perturbations: Reliability, vulnerability, and resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 133(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:515:y:2019:i:c:p:288-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.