IDEAS home Printed from
   My bibliography  Save this article

An overview of the global fertilizer trends and India’s position in 2020


  • Kirtikumar Randive

    (RTM Nagpur University)

  • Tejashree Raut

    (RTM Nagpur University)

  • Sanjeevani Jawadand

    (RTM Nagpur University)


The growing world population is expected to reach 9.7 billion by 2050, which will increase the present demand for food by ~ 70%. Consequently, to boost agrarian production and achieve food security, within limited arable land, the effective use of fertilizers becomes critical. However, the economic efficiency of mineral fertilizers has fallen dramatically as the price hike in fertilizers became dearer than food. The current winds of global climate change due to continued emissions of greenhouse gases from human activities have been posing unprecedented challenges before the agriculture sector and fertilizer industry. The limited geological resources of raw material for the manufacture of fertilizers and market fluctuations of fertilizer minerals initiate wide-reaching competition and raise challenge of food security. It is observed since the last century that the production of fertilizer minerals has risen almost constantly; however, consumption varied greatly from one region to another. It remained constant or declined in Western Europe and North America, but increased rapidly in East and South Asia especially in China and India. The Asian share of global fertilizer consumption is more than 60% and growing rapidly. This supply-demand pattern influences mineral fertilizers’ trade-flow and thereby global competition. Hence, there is a need to develop the fertilizer mineral sector and adopt policies and strategies to ensure materials security. The sustainable agricultural intensification and the agronomical proportions, timing, and placement with the right source are crucial factors which determine the sustainable utility of fertilizer minerals. In the wake of the above, we provide a critical appraisal of fertilizer minerals.

Suggested Citation

  • Kirtikumar Randive & Tejashree Raut & Sanjeevani Jawadand, 2021. "An overview of the global fertilizer trends and India’s position in 2020," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(3), pages 371-384, October.
  • Handle: RePEc:spr:minecn:v:34:y:2021:i:3:d:10.1007_s13563-020-00246-z
    DOI: 10.1007/s13563-020-00246-z

    Download full text from publisher

    File URL:
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Dawson, C.J. & Hilton, J., 2011. "Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus," Food Policy, Elsevier, vol. 36(Supplemen), pages 14-22, January.
    2. Michael C. Mew & Gerald Steiner & Bernhard Geissler, 2018. "Phosphorus Supply Chain—Scientific, Technical, and Economic Foundations: A Transdisciplinary Orientation," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    3. Aslihan Arslan & Nancy McCarthy & Leslie Lipper & Solomon Asfaw & Andrea Cattaneo & Misael Kokwe, 2015. "Climate Smart Agriculture? Assessing the Adaptation Implications in Zambia," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(3), pages 753-780, September.
    4. Nemecek, Thomas & Dubois, David & Huguenin-Elie, Olivier & Gaillard, Gérard, 2011. "Life cycle assessment of Swiss farming systems: I. Integrated and organic farming," Agricultural Systems, Elsevier, vol. 104(3), pages 217-232, March.
    5. Dawson, C.J. & Hilton, J., 2011. "Fertiliser availability in a resource-limited world: Production and recycling of nitrogen and phosphorus," Food Policy, Elsevier, vol. 36(S1), pages 14-22.
    6. Natasha Gilbert, 2009. "Environment: The disappearing nutrient," Nature, Nature, vol. 461(7265), pages 716-718, October.
    7. Nemecek, Thomas & Huguenin-Elie, Olivier & Dubois, David & Gaillard, Gérard & Schaller, Britta & Chervet, Andreas, 2011. "Life cycle assessment of Swiss farming systems: II. Extensive and intensive production," Agricultural Systems, Elsevier, vol. 104(3), pages 233-245, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Bai, Dongbei & Jain, Vipin & Tripathi, Mamta & Ali, Syed Ahtsham & Shabbir, Malik Shahzad & Mohamed, Mady A.A. & Ramos-Meza, Carlos Samuel, 2022. "Performance of biogas plant analysis and policy implications: Evidence from the commercial sources," Energy Policy, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Styles, David & Schoenberger, Harald & Galvez-Martos, Jose-Luis, 2012. "Environmental improvement of product supply chains: A review of European retailers’ performance," Resources, Conservation & Recycling, Elsevier, vol. 65(C), pages 57-78.
    2. Acosta-Alba, Ivonne & Chia, Eduardo & Andrieu, Nadine, 2019. "The LCA4CSA framework: Using life cycle assessment to strengthen environmental sustainability analysis of climate smart agriculture options at farm and crop system levels," Agricultural Systems, Elsevier, vol. 171(C), pages 155-170.
    3. Chowdhury, Rubel Biswas & Moore, Graham A. & Weatherley, Anthony J. & Arora, Meenakshi, 2014. "A review of recent substance flow analyses of phosphorus to identify priority management areas at different geographical scales," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 213-228.
    4. Mathy Sane & Miroslav Hajek & Chukwudi Nwaogu & Ratna Chrismiari Purwestri, 2021. "Subsidy as An Economic Instrument for Environmental Protection: A Case of Global Fertilizer Use," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    5. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    6. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    7. Dániel Fróna & János Szenderák & Mónika Harangi-Rákos, 2019. "The Challenge of Feeding the World," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    8. Meyer-Aurich, Andreas & Karatay, Yusuf Nadi, 2019. "Effects of uncertainty and farmers' risk aversion on optimal N fertilizer supply in wheat production in Germany," Agricultural Systems, Elsevier, vol. 173(C), pages 130-139.
    9. Michael Barrowclough & L. Geyer, 2015. "Biofuel Policies: The Underground Limitation on Biofuels," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 21(1), pages 55-65, March.
    10. Michal Kulak & Thomas Nemecek & Emmanuel Frossard & Gérard Gaillard, 2013. "How Eco-Efficient Are Low-Input Cropping Systems in Western Europe, and What Can Be Done to Improve Their Eco-Efficiency?," Sustainability, MDPI, vol. 5(9), pages 1-22, September.
    11. Kristina J. Kaske & Silvestre García de Jalón & Adrian G. Williams & Anil R. Graves, 2021. "Assessing the Impact of Greenhouse Gas Emissions on Economic Profitability of Arable, Forestry, and Silvoarable Systems," Sustainability, MDPI, vol. 13(7), pages 1-17, March.
    12. Prechsl, Ulrich E. & Wittwer, Raphael & van der Heijden, Marcel G.A. & Lüscher, Gisela & Jeanneret, Philippe & Nemecek, Thomas, 2017. "Assessing the environmental impacts of cropping systems and cover crops: Life cycle assessment of FAST, a long-term arable farming field experiment," Agricultural Systems, Elsevier, vol. 157(C), pages 39-50.
    13. Dmitrieva, D. & Ilinova, A. & Kraslawski, A., 2017. "Strategic management of the potash industry in Russia," Resources Policy, Elsevier, vol. 52(C), pages 81-89.
    14. Tulsidas, Harikrishnan & Gabriel, Sophie & Kiegiel, Katarzyna & Haneklaus, Nils, 2019. "Uranium resources in EU phosphate rock imports," Resources Policy, Elsevier, vol. 61(C), pages 151-156.
    15. Mirzaie, Nargis & Banihabib, Mohammad Ebrahim & shahdany, S. Mehdy hashemy & Randhir, Timothy O., 2021. "Fuzzy particle swarm optimization for conjunctive use of groundwater and reclaimed wastewater under uncertainty," Agricultural Water Management, Elsevier, vol. 256(C).
    16. Cecchin, Andrea & Pourhashem, Ghasideh & Gesch, Russ W. & Lenssen, Andrew W. & Mohammed, Yesuf A. & Patel, Swetabh & Berti, Marisol T., 2021. "Environmental trade-offs of relay-cropping winter cover crops with soybean in a maize-soybean cropping system," Agricultural Systems, Elsevier, vol. 189(C).
    17. Pashaei Kamali, Farahnaz & Borges, João A.R. & Meuwissen, Miranda P.M. & de Boer, Imke J.M. & Oude Lansink, Alfons G.J.M., 2017. "Sustainability assessment of agricultural systems: The validity of expert opinion and robustness of a multi-criteria analysis," Agricultural Systems, Elsevier, vol. 157(C), pages 118-128.
    18. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    19. Murphy, Fionnuala & Devlin, Ger & McDonnell, Kevin, 2013. "Miscanthus production and processing in Ireland: An analysis of energy requirements and environmental impacts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 412-420.
    20. Peter Horton & Steve A. Banwart & Dan Brockington & Garrett W. Brown & Richard Bruce & Duncan Cameron & Michelle Holdsworth & S. C. Lenny Koh & Jurriaan Ton & Peter Jackson, 2017. "An agenda for integrated system-wide interdisciplinary agri-food research," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(2), pages 195-210, April.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:minecn:v:34:y:2021:i:3:d:10.1007_s13563-020-00246-z. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.