IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v29y2024i4d10.1007_s11027-024-10126-4.html
   My bibliography  Save this article

Climate-Smart Agriculture in South Asia: exploring practices, determinants, and contribution to Sustainable Development Goals

Author

Listed:
  • Naveen Naveen

    (Gopali Community of Economics)

  • Pritha Datta

    (TERI School of Advanced Studies)

  • Bhagirath Behera

    (Indian Institute of Technology Kharagpur)

  • Dil Bahadur Rahut

    (Asian Development Bank Institute)

Abstract

In the face of unprecedented challenges arising from climate change, Climate-Smart Agriculture (CSA) emerges as a holistic solution for South Asia, addressing adaptation, mitigation, and Sustainable Development Goals (SDGs). However, a substantial knowledge gap exists regarding the current status of CSA practices, the factors influencing their adoption, and the specific SDGs that benefit from such adoption. Within this context, this study undertakes a systematic review of the literature (n = 78) concerning the adoption of CSA practices in South Asia, primarily drawing from three scholarly databases, viz. Web of Science, Scopus, and ScienceDirect. The results show that the widely adopted CSA practices in South Asia are climate-resilient seeds, zero tillage, water conservation, rescheduling planting, crop diversification, soil conservation, and water harvesting, agroforestry. Several factors, such as socio-economic factors (e.g. education, livestock ownership, age, landholding size, and market access), institutional factors (e.g. information and communication technology, credit availability, input subsidies, agricultural training and demonstration, direct cash transfer, and crop insurance), and climatic factors (e.g. increasing temperature, floods and droughts, decrease in rainfall, and delays in rainfall), are the major driving forces behind the adoption of CSA in South Asia. Implications of CSAs have positive impacts primarily on SDG-1, SDG-2, SDG-3, SDG-5, SDG-6, SDG-7, SDG-12, and SDG-13. The findings of this study hold important policy implications for creating an enabling environment that supports the widespread adoption of CSA practices. Key recommendations encompass establishing specialised training centres for women and elderly farmers, leveraging ICT tools, fostering collaboration between small and medium enterprises and agricultural agents, and enhancing market linkages and value chains for CSA products.

Suggested Citation

  • Naveen Naveen & Pritha Datta & Bhagirath Behera & Dil Bahadur Rahut, 2024. "Climate-Smart Agriculture in South Asia: exploring practices, determinants, and contribution to Sustainable Development Goals," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(4), pages 1-23, April.
  • Handle: RePEc:spr:masfgc:v:29:y:2024:i:4:d:10.1007_s11027-024-10126-4
    DOI: 10.1007/s11027-024-10126-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-024-10126-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-024-10126-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Collins C. Okolie & Gideon Danso-Abbeam & Okechukwu Groupson-Paul & Abiodun A. Ogundeji, 2022. "Climate-Smart Agriculture Amidst Climate Change to Enhance Agricultural Production: A Bibliometric Analysis," Land, MDPI, vol. 12(1), pages 1-23, December.
    2. Muhammad Faisal Shahzad & Awudu Abdulai & Gazali Issahaku, 2021. "Adaptation Implications of Climate-Smart Agriculture in Rural Pakistan," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    3. Das, Usha & Ansari, M.A. & Ghosh, Souvik, 2022. "Effectiveness and upscaling potential of climate smart agriculture interventions: Farmers' participatory prioritization and livelihood indicators as its determinants," Agricultural Systems, Elsevier, vol. 203(C).
    4. Siderius, C. & Boonstra, H. & Munaswamy, V. & Ramana, C. & Kabat, P. & van Ierland, E. & Hellegers, P., 2015. "Climate-smart tank irrigation: A multi-year analysis of improved conjunctive water use under high rainfall variability," Agricultural Water Management, Elsevier, vol. 148(C), pages 52-62.
    5. Vatsa, Puneet & Ma, Wanglin & Zheng, Hongyun & Li, Junpeng, 2023. "Climate-smart agricultural practices for promoting sustainable agrifood production: Yield impacts and implications for food security," Food Policy, Elsevier, vol. 121(C).
    6. M. Niaz Asadullah & Antonio Savoia & Kunal Sen, 2020. "Will South Asia Achieve the Sustainable Development Goals by 2030? Learning from the MDGs Experience," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(1), pages 165-189, November.
    7. Ma, Wanglin & Wang, Xiaobing, 2020. "Internet Use, Sustainable Agricultural Practices and Rural Incomes: Evidence from China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(04), January.
    8. Mukhtar Ahmad Faiz & Ram Swaroop Bana & Anil Kumar Choudhary & Alison M. Laing & Ruchi Bansal & Arti Bhatia & Ramesh Chand Bana & Yudh Vir Singh & Vipin Kumar & Shanti Devi Bamboriya & Rabindra Nath P, 2022. "Zero Tillage, Residue Retention and System-Intensification with Legumes for Enhanced Pearl Millet Productivity and Mineral Biofortification," Sustainability, MDPI, vol. 14(1), pages 1-19, January.
    9. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    10. Naveen P. Singh & Bhawna Anand & S. K. Srivastava & N. R. Kumar & Shirish Sharma & S. K. Bal & K. V. Rao & M. Prabhakar, 2022. "Risk, perception and adaptation to climate change: evidence from arid region, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1015-1037, June.
    11. Arun Khatri-Chhetri & Punya Prasad Regmi & Nitya Chanana & Pramod K. Aggarwal, 2020. "Potential of climate-smart agriculture in reducing women farmers’ drudgery in high climatic risk areas," Climatic Change, Springer, vol. 158(1), pages 29-42, January.
    12. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    13. Wanglin Ma & Xiaobing Wang, 2020. "Internet Use, Sustainable Agricultural Practices and Rural Incomes: Evidence from China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(4), pages 1087-1112, October.
    14. Shamsheer ul Haq & Ismet Boz & Pomi Shahbaz, 2021. "Adoption of climate-smart agriculture practices and differentiated nutritional outcome among rural households: a case of Punjab province, Pakistan," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 13(4), pages 913-931, August.
    15. Suresh K. Kakraliya & Hanuman S. Jat & Tek B. Sapkota & Ishwar Singh & Manish Kakraliya & Manoj K. Gora & Parbodh C. Sharma & Mangi L. Jat, 2021. "Effect of Climate-Smart Agriculture Practices on Climate Change Adaptation, Greenhouse Gas Mitigation and Economic Efficiency of Rice-Wheat System in India," Agriculture, MDPI, vol. 11(12), pages 1-20, December.
    16. Jeetendra Prakash Aryal & Dil Bahadur Rahut & Sofina Maharjan & Olaf Erenstein, 2018. "Factors affecting the adoption of multiple climate‐smart agricultural practices in the Indo‐Gangetic Plains of India," Natural Resources Forum, Blackwell Publishing, vol. 42(3), pages 141-158, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barooah, Prapti & Alvi, Muzna & Ringler, Claudia & Pathak, Vishal, 2023. "Gender, agriculture policies, and climate-smart agriculture in India," Agricultural Systems, Elsevier, vol. 212(C).
    2. Das, Usha & Ansari, M.A. & Ghosh, Souvik, 2022. "Effectiveness and upscaling potential of climate smart agriculture interventions: Farmers' participatory prioritization and livelihood indicators as its determinants," Agricultural Systems, Elsevier, vol. 203(C).
    3. Usha Das & M. A. Ansari & Souvik Ghosh, 2024. "Measures of livelihoods and their effect on vulnerability of farmers to climate change: evidence from coastal and non-coastal regions in India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(2), pages 4801-4836, February.
    4. Bright O. Asante & Wanglin Ma & Stephen Prah & Omphile Temoso, 2024. "Farmers’ adoption of multiple climate-smart agricultural technologies in Ghana: determinants and impacts on maize yields and net farm income," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(2), pages 1-23, February.
    5. Kapoor, Shreya & Pal, Barun Deb, 2024. "Impact of adoption of climate smart agriculture practices on farmer's income in semi-arid regions of Karnataka," Agricultural Systems, Elsevier, vol. 221(C).
    6. Jeetendra Prakash Aryal & Cathy R. Farnworth & Ritika Khurana & Srabashi Ray & Tek B. Sapkota & Dil Bahadur Rahut, 2020. "Does women’s participation in agricultural technology adoption decisions affect the adoption of climate‐smart agriculture? Insights from Indo‐Gangetic Plains of India," Review of Development Economics, Wiley Blackwell, vol. 24(3), pages 973-990, August.
    7. Thu-Huong Nguyen & Oz Sahin & Michael Howes, 2021. "Climate Change Adaptation Influences and Barriers Impacting the Asian Agricultural Industry," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    8. Oparinde, Lawrence Olusola, 2023. "ICTs Use, Agroforestry Technologies’ Adoption and Crop Farmers’ Welfare: An Empirical Evidence from Southwest, Nigeria," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 15(4), December.
    9. Pomi Shahbaz & Shamsheer ul Haq & Azhar Abbas & Zahira Batool & Bader Alhafi Alotaibi & Roshan K. Nayak, 2022. "Adoption of Climate Smart Agricultural Practices through Women Involvement in Decision Making Process: Exploring the Role of Empowerment and Innovativeness," Agriculture, MDPI, vol. 12(8), pages 1-16, August.
    10. Martinson Ankrah Twumasi & Gloria Essilfie & Bright Senyo Dogbe & Ernest Kwarko Ankrah & Charles Hackman Kwamena Essel, 2024. "Does access to financial services improve nutritional intake among rural residents? Assessing potential action mechanism pathways," Review of Development Economics, Wiley Blackwell, vol. 28(3), pages 1131-1151, August.
    11. Bhavani Prasad Thottadi & S. P. Singh, 2024. "Climate-smart agriculture (CSA) adaptation, adaptation determinants and extension services synergies: a systematic review," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(3), pages 1-29, March.
    12. Mercy Nyambura Mburu & John Mburu & Rose Nyikal & Amin Mugera & Asaah Ndambi, 2024. "Assessment of socio-economic determinants and impacts of climate-smart feeding practices in the Kenyan dairy sector," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(5), pages 1-25, June.
    13. Zhang, Jian & Wang, Dongqiang & Ji, Ming & Yu, Kuo & Qi, Mosha & Wang, Hui, 2024. "Digital literacy, relative poverty, and common prosperity for rural households," International Review of Financial Analysis, Elsevier, vol. 96(PB).
    14. Jigyasa Sandilya & Kishor Goswami, 2024. "Effect of different forms of capital on the adoption of multiple climate-smart agriculture strategies by smallholder farmers in Assam, India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(4), pages 1-23, April.
    15. Shrestha, Sujata & Shrestha, Uttam Babu & Shrestha, Bibek Raj & Maharjan, Shirish & Udas, Erica & Aryal, Kamal, 2024. "Determinants of adoption of climate resilient agricultural solutions," Agricultural Systems, Elsevier, vol. 221(C).
    16. Perelli, Chiara & Cacchiarelli, Luca & Peveri, Valentina & Branca, Giacomo, 2024. "Gender equality and sustainable development: A cross-country study on women's contribution to the adoption of the climate-smart agriculture in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 219(C).
    17. Abdul Rehman & Zakia Batool & Hengyun Ma & Rafael Alvarado & Judit Oláh, 2024. "Climate change and food security in South Asia: the importance of renewable energy and agricultural credit," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    18. Xiance Sang & Chen Chen & Die Hu & Dil Bahadur Rahut, 2024. "Economic benefits of climate-smart agricultural practices: empirical investigations and policy implications," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 29(1), pages 1-21, January.
    19. Datta, Pritha & Behera, Bhagirath & Rahut, Dil Bahadur, 2024. "Assessing the role of agriculture-forestry-livestock nexus in improving farmers' food security in South Asia: A systematic literature review," Agricultural Systems, Elsevier, vol. 213(C).
    20. Bright O. Asante & Kwabena N. Addai & Stephen Prah & Omphile Temoso & John N. Ng'ombe, 2023. "Hand pollination, mass spraying, and hybrid seedlings: Do these technologies affect the welfare of smallholder cocoa farmers in Ghana?," Review of Development Economics, Wiley Blackwell, vol. 27(4), pages 2271-2300, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:29:y:2024:i:4:d:10.1007_s11027-024-10126-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.