IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Optimal carbon mitigation strategy under non-linear feedback effects and in the presence of permafrost release trigger hazard

  • Ram Ranjan

    ()

Registered author(s):

    The threat of release of methane sequestered in the circumpolar Arctic regions of the world creates the possibility of triggering additional feedback effects from the terrestrial and the deep ocean systems which could potentially add large amounts of carbon (C) into the atmosphere. This paper analyses the implications for C mitigation policy under the threats of a substantial permafrost methane release. Several insights emerge from the analysis. First, the presence of non-linear feedbacks creates a bifurcation zone in the C emissions-stock space, on one side of which large accumulations of atmospheric C materialize leading to significant damages. Second, the bifurcation line does not have a steep slope, implying that it would be possible to avoid falling on the wrong side of this zone even if the current atmospheric stock of C were higher than what they are today. Third, when the release of permafrost C is uncertain, there is benefit in reducing anthropogenic C more than what would be optimal under a certain release of the same. Fourth, higher abatement cost scenarios do not necessarily imply significantly reduced abatement efforts. On the contrary, abatement efforts, which are only reduced marginally under this scenario, ensure that long run carbon path is stabilized. This is done in order to avoid incurring substantial costs of abatement in the future when non-linear feedback effects kick in. Copyright Springer Science+Business Media Dordrecht 2014

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1007/s11027-012-9444-9
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Mitigation and Adaptation Strategies for Global Change.

    Volume (Year): 19 (2014)
    Issue (Month): 4 (April)
    Pages: 479-497

    as
    in new window

    Handle: RePEc:spr:masfgc:v:19:y:2014:i:4:p:479-497
    Contact details of provider: Web page: http://www.springer.com/economics/journal/11027

    Order Information: Web: http://link.springer.de/orders.htm

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. William D. Nordhaus, 1992. "Rolling the 'Dice': An Optimal Transition Path for Controlling Greenhouse Gases," Cowles Foundation Discussion Papers 1019, Cowles Foundation for Research in Economics, Yale University.
    2. Detlef Vuuren & Jason Lowe & Elke Stehfest & Laila Gohar & Andries Hof & Chris Hope & Rachel Warren & Malte Meinshausen & Gian-Kasper Plattner, 2011. "How well do integrated assessment models simulate climate change?," Climatic Change, Springer, vol. 104(2), pages 255-285, January.
    3. Simon Dietz & Nicholas Stern, 2008. "Why Economic Analysis Supports Strong Action on Climate Change: A Response to the Stern Review's Critics," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 2(1), pages 94-113, Winter.
    4. Weitzman, Martin L., 2009. "On Modeling and Interpreting the Economics of Catastrophic Climate Change," Scholarly Articles 3693423, Harvard University Department of Economics.
    5. Martin L. Weitzman, 2010. "What Is The "Damages Function" For Global Warming — And What Difference Might It Make?," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 57-69.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:19:y:2014:i:4:p:479-497. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn)

    or (Christopher F Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.