IDEAS home Printed from https://ideas.repec.org/a/spr/joamsc/v46y2018i6d10.1007_s11747-018-0590-9.html
   My bibliography  Save this article

Modeling the effects of dynamic group influence on shopper zone choice, purchase conversion, and spending

Author

Listed:
  • Xiaoling Zhang

    (Shanghai University of International Business and Economics)

  • Shibo Li

    (Indiana University)

  • Raymond R. Burke

    (Indiana University)

Abstract

In many retail contexts, social interaction plays an important role in the shopping process. We propose a three-stage dynamic linear model that captures the influence of group discussion on shopper behavior within a hierarchical Bayes framework. The model is tested using a video tracking and transaction dataset from a specialty apparel store. The research reveals that group conversations have a significant impact on the shopper’s department or “zone” choice, purchase likelihood, and spending over time. This group influence is magnified by the size of the group (particularly for zone penetration and purchase conversion), and is also moderated by group composition and cohesiveness. The conversations of mixed-age groups and groups who stay together while shopping have a significant influence on shopper behavior across all three stages, while discussions by adult groups exhibit a marginal carryover effect for purchase conversion. When shoppers have repeated discussions in a specific department, they are more likely to return to and buy from this department, while the cumulative number of discussions in the store drives higher spending levels. We also observe that group shoppers visit more departments than their solo counterparts; and mixed-age groups and solo shoppers are more likely to buy than adults-only or teen groups. This study has important implications for how retailers manage shopper engagement and group interaction in their stores.

Suggested Citation

  • Xiaoling Zhang & Shibo Li & Raymond R. Burke, 2018. "Modeling the effects of dynamic group influence on shopper zone choice, purchase conversion, and spending," Journal of the Academy of Marketing Science, Springer, vol. 46(6), pages 1089-1107, November.
  • Handle: RePEc:spr:joamsc:v:46:y:2018:i:6:d:10.1007_s11747-018-0590-9
    DOI: 10.1007/s11747-018-0590-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11747-018-0590-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11747-018-0590-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Childers, Terry L & Rao, Akshay R, 1992. "The Influence of Familial and Peer-Based Reference Groups on Consumer Decisions," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 19(2), pages 198-211, September.
    2. Vishal Narayan & Vithala R. Rao & Carolyne Saunders, 2011. "How Peer Influence Affects Attribute Preferences: A Bayesian Updating Mechanism," Marketing Science, INFORMS, vol. 30(2), pages 368-384, 03-04.
    3. Puneet Manchanda & Asim Ansari & Sunil Gupta, 1999. "The “Shopping Basket”: A Model for Multicategory Purchase Incidence Decisions," Marketing Science, INFORMS, vol. 18(2), pages 95-114.
    4. Arnold, Mark J. & Reynolds, Kristy E. & Ponder, Nicole & Lueg, Jason E., 2005. "Customer delight in a retail context: investigating delightful and terrible shopping experiences," Journal of Business Research, Elsevier, vol. 58(8), pages 1132-1145, August.
    5. Sam K. Hui & Peter S. Fader & Eric T. Bradlow, 2009. "—The Traveling Salesman Goes Shopping: The Systematic Deviations of Grocery Paths from TSP Optimality," Marketing Science, INFORMS, vol. 28(3), pages 566-572, 05-06.
    6. Page, Bill & Sharp, Anne & Lockshin, Larry & Sorensen, Herb, 2018. "Parents and children in supermarkets: Incidence and influence," Journal of Retailing and Consumer Services, Elsevier, vol. 40(C), pages 31-39.
    7. Jeongwen Chiang, 1991. "A Simultaneous Approach to the Whether, What and How Much to Buy Questions," Marketing Science, INFORMS, vol. 10(4), pages 297-315.
    8. Furse, David H & Punj, Girish N & Stewart, David W, 1984. "A Typology of Individual Search Strategies among Purchasers of New Automobiles," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 10(4), pages 417-431, March.
    9. Alan L. Montgomery & Shibo Li & Kannan Srinivasan & John C. Liechty, 2004. "Modeling Online Browsing and Path Analysis Using Clickstream Data," Marketing Science, INFORMS, vol. 23(4), pages 579-595, November.
    10. Corfman, Kim P & Lehmann, Donald R, 1987. "Models of Cooperative Group Decision-Making and Relative Influence: An Experimental Investigation of Family Purchase Decisions," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 14(1), pages 1-13, June.
    11. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    12. Puccinelli, Nancy M. & Goodstein, Ronald C. & Grewal, Dhruv & Price, Robert & Raghubir, Priya & Stewart, David, 2009. "Customer Experience Management in Retailing: Understanding the Buying Process," Journal of Retailing, Elsevier, vol. 85(1), pages 15-30.
    13. Sam K. Hui & Peter S. Fader & Eric T. Bradlow, 2009. "Path Data in Marketing: An Integrative Framework and Prospectus for Model Building," Marketing Science, INFORMS, vol. 28(2), pages 320-335, 03-04.
    14. Anocha Aribarg & Neeraj Arora & Moon Young Kang, 2010. "Predicting Joint Choice Using Individual Data," Marketing Science, INFORMS, vol. 29(1), pages 139-157, 01-02.
    15. Sinan Aral & Dylan Walker, 2014. "Tie Strength, Embeddedness, and Social Influence: A Large-Scale Networked Experiment," Management Science, INFORMS, vol. 60(6), pages 1352-1370, June.
    16. Sam K. Hui & Eric T. Bradlow & Peter S. Fader, 2009. "Testing Behavioral Hypotheses Using an Integrated Model of Grocery Store Shopping Path and Purchase Behavior," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 36(3), pages 478-493.
    17. Shun Yin Lam & Mark Vandenbosch & John Hulland & Michael Pearce, 2001. "Evaluating Promotions in Shopping Environments: Decomposing Sales Response into Attraction, Conversion, and Spending Effects," Marketing Science, INFORMS, vol. 20(2), pages 194-215, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tim Hilken & Debbie I. Keeling & Ko Ruyter & Dominik Mahr & Mathew Chylinski, 2020. "Seeing eye to eye: social augmented reality and shared decision making in the marketplace," Journal of the Academy of Marketing Science, Springer, vol. 48(2), pages 143-164, March.
    2. Balakrishnan, Janarthanan & Foroudi, Pantea & Dwivedi, Yogesh K., 2020. "Does online retail coupons and memberships create favourable psychological disposition?," Journal of Business Research, Elsevier, vol. 116(C), pages 229-244.
    3. Mukhopadhyay, Soumya & Vijayalakshmi, Akshaya & Jain, Shailendra P., 2023. "Understanding consumers in-store behavior: The dual role of episode-specific motive adjustment and motive selection," Journal of Retailing, Elsevier, vol. 99(3), pages 460-479.
    4. Epstein, Leonardo D. & Inostroza-Quezada, Ignacio E. & Goodstein, Ronald C. & Choi, S. Chan, 2021. "Dynamic effects of store promotions on purchase conversion: Expanding technology applications with innovative analytics," Journal of Business Research, Elsevier, vol. 128(C), pages 279-289.
    5. Alexander B. Pratt & Stacey G. Robinson & Clay M. Voorhees & Joyce (Feng) Wang & Michael D. Giebelhausen, 2023. "Unintended effects of price promotions: Forgoing competitors’ price promotions strengthens incumbent brand loyalty," Journal of the Academy of Marketing Science, Springer, vol. 51(5), pages 1143-1164, September.
    6. Sebastian Schneider, 2022. "Price-related consumer discussions in China and the United States: a cross-cultural study investigating price perceptions and word-of-mouth transmission," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(3), pages 274-290, June.
    7. Sebastian Schneider & Frank Huber, 2022. "You paid what!? Understanding price-related word-of-mouth and price perception among opinion leaders and innovators," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(1), pages 64-80, February.
    8. Gui, Dan-Yang & Liu, Shixiong & Dai, Yu & Liu, Ying & Wang, Xiaoli & Huang, Huiying, 2021. "Greater patience and monetary expenditure: How shopping with companions influences purchase decisions," Journal of Retailing and Consumer Services, Elsevier, vol. 63(C).
    9. Abhishek Borah & Francesca Bonetti & Angelito Calma & José Martí-Parreño, 2023. "The Journal of the Academy of Marketing Science at 50: A historical analysis," Journal of the Academy of Marketing Science, Springer, vol. 51(1), pages 222-243, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bradlow, Eric T. & Gangwar, Manish & Kopalle, Praveen & Voleti, Sudhir, 2017. "The Role of Big Data and Predictive Analytics in Retailing," Journal of Retailing, Elsevier, vol. 93(1), pages 79-95.
    2. Vishal Narayan & Vithala R. Rao & Carolyne Saunders, 2011. "How Peer Influence Affects Attribute Preferences: A Bayesian Updating Mechanism," Marketing Science, INFORMS, vol. 30(2), pages 368-384, 03-04.
    3. Gauri, Dinesh K. & Ratchford, Brian & Pancras, Joseph & Talukdar, Debabrata, 2017. "An Empirical Analysis of the Impact of Promotional Discounts on Store Performance," Journal of Retailing, Elsevier, vol. 93(3), pages 283-303.
    4. Epstein, Leonardo D. & Inostroza-Quezada, Ignacio E. & Goodstein, Ronald C. & Choi, S. Chan, 2021. "Dynamic effects of store promotions on purchase conversion: Expanding technology applications with innovative analytics," Journal of Business Research, Elsevier, vol. 128(C), pages 279-289.
    5. Sam Hui & Eric Bradlow, 2012. "Bayesian multi-resolution spatial analysis with applications to marketing," Quantitative Marketing and Economics (QME), Springer, vol. 10(4), pages 419-452, December.
    6. Kosuke Uetake & Nathan Yang, 2020. "Inspiration from the “Biggest Loser”: Social Interactions in a Weight Loss Program," Marketing Science, INFORMS, vol. 39(3), pages 487-499, May.
    7. Jing Wang & Anocha Aribarg & Yves F. Atchadé, 2013. "Modeling Choice Interdependence in a Social Network," Marketing Science, INFORMS, vol. 32(6), pages 977-997, November.
    8. Kakatkar, Chinmay & Spann, Martin, 2019. "Marketing analytics using anonymized and fragmented tracking data," International Journal of Research in Marketing, Elsevier, vol. 36(1), pages 117-136.
    9. Larsen, Nils Magne & Sigurdsson, Valdimar & Breivik, Jørgen & Orquin, Jacob Lund, 2020. "The heterogeneity of shoppers’ supermarket behaviors based on the use of carrying equipment," Journal of Business Research, Elsevier, vol. 108(C), pages 390-400.
    10. Sorensen, Herb & Bogomolova, Svetlana & Anderson, Katherine & Trinh, Giang & Sharp, Anne & Kennedy, Rachel & Page, Bill & Wright, Malcolm, 2017. "Fundamental patterns of in-store shopper behavior," Journal of Retailing and Consumer Services, Elsevier, vol. 37(C), pages 182-194.
    11. Lim, Junsang & Beatty, Sharon E., 2011. "Factors affecting couples' decisions to jointly shop," Journal of Business Research, Elsevier, vol. 64(7), pages 774-781, July.
    12. Boone, Tonya & Ganeshan, Ram & Jain, Aditya & Sanders, Nada R., 2019. "Forecasting sales in the supply chain: Consumer analytics in the big data era," International Journal of Forecasting, Elsevier, vol. 35(1), pages 170-180.
    13. Jaehwan Kim & Greg M. Allenby & Peter E. Rossi, 2002. "Modeling Consumer Demand for Variety," Marketing Science, INFORMS, vol. 21(3), pages 229-250, December.
    14. Bhat, Chandra R., 2005. "A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions," Transportation Research Part B: Methodological, Elsevier, vol. 39(8), pages 679-707, September.
    15. Kim, Chul & Jun, Duk Bin & Park, Sungho, 2018. "Capturing flexible correlations in multiple-discrete choice outcomes using copulas," International Journal of Research in Marketing, Elsevier, vol. 35(1), pages 34-59.
    16. Herhausen, Dennis & Kleinlercher, Kristina & Verhoef, Peter C. & Emrich, Oliver & Rudolph, Thomas, 2019. "Loyalty Formation for Different Customer Journey Segments," Journal of Retailing, Elsevier, vol. 95(3), pages 9-29.
    17. Pauwels, Koen & Aksehirli, Zeynep & Lackman, Andrew, 2016. "Like the ad or the brand? Marketing stimulates different electronic word-of-mouth content to drive online and offline performance," International Journal of Research in Marketing, Elsevier, vol. 33(3), pages 639-655.
    18. Bhat, Chandra R., 2008. "The multiple discrete-continuous extreme value (MDCEV) model: Role of utility function parameters, identification considerations, and model extensions," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 274-303, March.
    19. Stephan Seiler & Song Yao, 2017. "The impact of advertising along the conversion funnel," Quantitative Marketing and Economics (QME), Springer, vol. 15(3), pages 241-278, September.
    20. Nitin Mehta, 2007. "Investigating Consumers' Purchase Incidence and Brand Choice Decisions Across Multiple Product Categories: A Theoretical and Empirical Analysis," Marketing Science, INFORMS, vol. 26(2), pages 196-217, 03-04.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joamsc:v:46:y:2018:i:6:d:10.1007_s11747-018-0590-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.