IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v50y2025i1d10.1007_s10878-025-01340-0.html
   My bibliography  Save this article

Mutually dependent, balanced contributions, and the priority value

Author

Listed:
  • Songtao He

    (Shanghai University)

  • Erfang Shan

    (Shanghai University)

  • Yuxin Sun

    (Shanghai University)

Abstract

The Priority value (Béal et al. in Int J Game Theory 51:431–450, 2022) is an allocation rule for TU-games with a priority structure, which distributes the Harsanyi dividend of each coalition among the set of its priority players. In this paper we propose two variants of the differential marginality of mutually dependent players axiom for TU-games with a priority structure, and extend the classical axiom of balanced contributions to TU-games with a priority structure. We provide several new characterizations of the Priority value which invoke these modified axioms and the standard axioms: efficiency, the null player property, the priority player out and the null player out.

Suggested Citation

  • Songtao He & Erfang Shan & Yuxin Sun, 2025. "Mutually dependent, balanced contributions, and the priority value," Journal of Combinatorial Optimization, Springer, vol. 50(1), pages 1-16, August.
  • Handle: RePEc:spr:jcomop:v:50:y:2025:i:1:d:10.1007_s10878-025-01340-0
    DOI: 10.1007/s10878-025-01340-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-025-01340-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-025-01340-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. René Brink & Gerard Laan & Valeri Vasil’ev, 2014. "Constrained core solutions for totally positive games with ordered players," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(2), pages 351-368, May.
    2. René van den Brink, 2017. "Games with a Permission Structure: a survey on generalizations and applications," Tinbergen Institute Discussion Papers 17-016/II, Tinbergen Institute.
    3. Sylvain Béal & Sylvain Ferrières & Adriana Navarro‐Ramos & Philippe Solal, 2023. "Axiomatic characterizations of the family of Weighted priority values," International Journal of Economic Theory, The International Society for Economic Theory, vol. 19(4), pages 787-816, December.
    4. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    5. André Casajus, 2011. "Differential marginality, van den Brink fairness, and the Shapley value," Theory and Decision, Springer, vol. 71(2), pages 163-174, August.
    6. E. Algaba & J. M. Bilbao & P. Borm & J. J. López, 2001. "The Myerson value for union stable structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 54(3), pages 359-371, December.
    7. AUMANN, Robert J. & DREZE, Jacques H., 1974. "Cooperative games with coalition structures," LIDAM Reprints CORE 217, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Sylvain Béal & Sylvain Ferrières & Philippe Solal, 2022. "The priority value for cooperative games with a priority structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 431-450, June.
    9. E. C. Gavilán & C. Manuel & R. Brink, 2023. "Directed communication in games with directed graphs," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 584-617, October.
    10. René Brink, 2017. "Rejoinder on: Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 45-48, April.
    11. Nowak, A.S. & Radzik, T., 1995. "On axiomatizations of the weighted Shapley values," Games and Economic Behavior, Elsevier, vol. 8(2), pages 389-405.
    12. Gilles, Robert P & Owen, Guillermo & van den Brink, Rene, 1992. "Games with Permission Structures: The Conjunctive Approach," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 277-293.
    13. Jean J. M. Derks & Hans H. Haller, 1999. "Null Players Out? Linear Values For Games With Variable Supports," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 1(03n04), pages 301-314.
    14. Lowing, David & Techer, Kevin, 2022. "Priority relations and cooperation with multiple activity levels," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    15. Yoshio Kamijo & Takumi Kongo, 2010. "Axiomatization of the Shapley value using the balanced cycle contributions property," International Journal of Game Theory, Springer;Game Theory Society, vol. 39(4), pages 563-571, October.
    16. Shan, Erfang & Cui, Zeguang & Yu, Bingxin, 2024. "New characterizations of the Shapley value using weak differential marginalities," Economics Letters, Elsevier, vol. 238(C).
    17. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    18. Faigle, U & Kern, W, 1992. "The Shapley Value for Cooperative Games under Precedence Constraints," International Journal of Game Theory, Springer;Game Theory Society, vol. 21(3), pages 249-266.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sylvain Béal & Sylvain Ferrières & Philippe Solal, 2022. "The priority value for cooperative games with a priority structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 431-450, June.
    2. David Lowing, 2023. "Allocation rules for multi-choice games with a permission tree structure," Annals of Operations Research, Springer, vol. 320(1), pages 261-291, January.
    3. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    4. Rene van den Brink & Ilya Katsev & Gerard van der Laan, 2023. "Properties of Solutions for Games on Union-Closed Systems," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    5. Sylvain Béal & Sylvain Ferrières & Adriana Navarro‐Ramos & Philippe Solal, 2023. "Axiomatic characterizations of the family of Weighted priority values," International Journal of Economic Theory, The International Society for Economic Theory, vol. 19(4), pages 787-816, December.
    6. Sylvain Béal & Issofa Moyouwou & Eric Rémila & Phillippe Solal, 2018. "Cooperative games on intersection closed systems and the Shapley value," Working Papers 2018-06, CRESE.
    7. Tobias Hiller, 2021. "Hierarchy and the size of a firm," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 68(3), pages 389-404, September.
    8. Béal, Sylvain & Moyouwou, Issofa & Rémila, Eric & Solal, Philippe, 2020. "Cooperative games on intersection closed systems and the Shapley value," Mathematical Social Sciences, Elsevier, vol. 104(C), pages 15-22.
    9. Lowing, David & Techer, Kevin, 2022. "Priority relations and cooperation with multiple activity levels," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    10. Florian Navarro, 2025. "Cooperative games with types, outside options, and the egalitarian value," Post-Print hal-04324424, HAL.
    11. Encarnaciön Algaba & Sylvain Béal & Eric Rémila & Phillippe Solal, 2018. "Harsanyi power solutions for cooperative games on voting structures," Working Papers 2018-05, CRESE.
    12. Navarro, Florian, 2025. "Cooperative games with types, outside options, and the egalitarian value," Mathematical Social Sciences, Elsevier, vol. 134(C), pages 42-49.
    13. Funaki, Yukihiko & Núñez, Marina, 2024. "Some advances in cooperative game theory: Indivisibilities, externalities and axiomatic approach," Journal of Mathematical Economics, Elsevier, vol. 115(C).
    14. Daniel Li Li & Erfang Shan, 2021. "Cooperative games with partial information," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(1), pages 297-309, March.
    15. Zhengxing Zou & Qiang Zhang, 2018. "Harsanyi power solution for games with restricted cooperation," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 26-47, January.
    16. Faigle, U. & Grabisch, M. & Heyne, M., 2010. "Monge extensions of cooperation and communication structures," European Journal of Operational Research, Elsevier, vol. 206(1), pages 104-110, October.
    17. E. Algaba & J. Bilbao & R. Brink, 2015. "Harsanyi power solutions for games on union stable systems," Annals of Operations Research, Springer, vol. 225(1), pages 27-44, February.
    18. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    19. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    20. Takashi Ui & Hiroyuki Kojima & Atsushi Kajii, 2011. "The Myerson value for complete coalition structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 427-443, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:50:y:2025:i:1:d:10.1007_s10878-025-01340-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.