IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v30y2025i2d10.1007_s13253-024-00658-2.html
   My bibliography  Save this article

Modeling Interactions Within French Dairy-Cattle Systems Using R-Vines

Author

Listed:
  • Naomi Ouachene

    (INRAE, Institut Agro, SAS)

  • Claudia Czado

    (Technical University of Munich)

  • Michael S. Corson

    (INRAE, Institut Agro, SAS)

  • Tristan Senga Kiessé

    (INRAE, Institut Agro, SAS)

Abstract

Farms face multiple challenges, such as decreasing their environmental impacts without decreasing productivity or revenue too much. Farms emit several greenhouse gases, whose multiple sources are influenced by many interacting factors on the farms and in their environments, which make farms and their dynamics more difficult to understand. To assess specifically how these interactions influence farm performances, we investigated the ability of regular vine copulas, which are composed of a wide variety of bivariate copulas, to map multivariate complex dependence patterns. The method was applied to a dataset of management practices, emissions and productivity of 2347 French dairy farms. An initial assessment of all farms combined identified specific dependencies. In particular, methane emissions from manure management depended on milk production, since strategies for producing milk influence herd management, time spent inside the barn and manure management. A second assessment identified changes in the dependencies among variables as a function of farm productivity. In addition to describing interactions among descriptive variables of farms, this method characterizes their dependencies, even among their extreme values. The assessments demonstrated the utility of using regular vine copulas to model farms, whose variables are connected by chains of multiple reactions and interactions. Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Naomi Ouachene & Claudia Czado & Michael S. Corson & Tristan Senga Kiessé, 2025. "Modeling Interactions Within French Dairy-Cattle Systems Using R-Vines," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 30(2), pages 363-384, June.
  • Handle: RePEc:spr:jagbes:v:30:y:2025:i:2:d:10.1007_s13253-024-00658-2
    DOI: 10.1007/s13253-024-00658-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-024-00658-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-024-00658-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ihsan F. Hasan & Rozi Abdullah, 2022. "Agricultural Drought Characteristics Analysis Using Copula," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 5915-5930, December.
    2. Mazo, Gildas & Girard, Stéphane & Forbes, Florence, 2015. "A class of multivariate copulas based on products of bivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 363-376.
    3. Marco Geidosch & Matthias Fischer, 2016. "Application of Vine Copulas to Credit Portfolio Risk Modeling," JRFM, MDPI, vol. 9(2), pages 1-15, June.
    4. Kjersti Aas, 2016. "Pair-Copula Constructions for Financial Applications: A Review," Econometrics, MDPI, vol. 4(4), pages 1-15, October.
    5. Bekiros, Stelios & Hernandez, Jose Arreola & Hammoudeh, Shawkat & Nguyen, Duc Khuong, 2015. "Multivariate dependence risk and portfolio optimization: An application to mining stock portfolios," Resources Policy, Elsevier, vol. 46(P2), pages 1-11.
    6. Holger Dette & Ria Van Hecke & Stanislav Volgushev, 2014. "Some Comments on Copula-Based Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1319-1324, September.
    7. Saralees Nadarajah & Emmanuel Afuecheta & Stephen Chan, 2017. "A Compendium of Copulas," Statistica, Department of Statistics, University of Bologna, vol. 77(4), pages 279-328.
    8. Arreola Hernandez, Jose, 2014. "Are oil and gas stocks from the Australian market riskier than coal and uranium stocks? Dependence risk analysis and portfolio optimization," Energy Economics, Elsevier, vol. 45(C), pages 528-536.
    9. Zhi, Bangdong & Wang, Xiaojun & Xu, Fangming, 2020. "Impawn rate optimisation in inventory financing: A canonical vine copula-based approach," International Journal of Production Economics, Elsevier, vol. 227(C).
    10. Mendes, Beatriz Vaz de Melo & Marques, Daniel S., 2012. "Choosing an optimal investment strategy: The role of robust pair-copulas based portfolios," Emerging Markets Review, Elsevier, vol. 13(4), pages 449-464.
    11. Al Rahahleh, Naseem & Bhatti, M. Ishaq, 2017. "Co-movement measure of information transmission on international equity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 119-131.
    12. Matthew V DiLeo & Gary D Strahan & Meghan den Bakker & Owen A Hoekenga, 2011. "Weighted Correlation Network Analysis (WGCNA) Applied to the Tomato Fruit Metabolome," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-10, October.
    13. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    14. Stöber, Jakob & Joe, Harry & Czado, Claudia, 2013. "Simplified pair copula constructions—Limitations and extensions," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 101-118.
    15. Krupskii, Pavel & Joe, Harry, 2013. "Factor copula models for multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 85-101.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kjersti Aas, 2016. "Pair-Copula Constructions for Financial Applications: A Review," Econometrics, MDPI, vol. 4(4), pages 1-15, October.
    2. Wattanawongwan, Suttisak & Mues, Christophe & Okhrati, Ramin & Choudhry, Taufiq & So, Mee Chi, 2023. "Modelling credit card exposure at default using vine copula quantile regression," European Journal of Operational Research, Elsevier, vol. 311(1), pages 387-399.
    3. Maziar Sahamkhadam & Andreas Stephan, 2019. "Portfolio optimization based on forecasting models using vine copulas: An empirical assessment for the financial crisis," Papers 1912.10328, arXiv.org.
    4. Müller, Dominik & Czado, Claudia, 2019. "Dependence modelling in ultra high dimensions with vine copulas and the Graphical Lasso," Computational Statistics & Data Analysis, Elsevier, vol. 137(C), pages 211-232.
    5. Kraus, Daniel & Czado, Claudia, 2017. "D-vine copula based quantile regression," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 1-18.
    6. Eugen Ivanov & Aleksey Min & Franz Ramsauer, 2017. "Copula-Based Factor Models for Multivariate Asset Returns," Econometrics, MDPI, vol. 5(2), pages 1-24, May.
    7. Tamara Teplova & Mikova Evgeniia & Qaiser Munir & Nataliya Pivnitskaya, 2023. "Black-Litterman model with copula-based views in mean-CVaR portfolio optimization framework with weight constraints," Economic Change and Restructuring, Springer, vol. 56(1), pages 515-535, February.
    8. John Weirstrass Muteba Mwamba & Sutene Mwambetania Mwambi, 2021. "Assessing Market Risk in BRICS and Oil Markets: An Application of Markov Switching and Vine Copula," IJFS, MDPI, vol. 9(2), pages 1-22, May.
    9. Maximilian Coblenz & Simon Holz & Hans‐Jörg Bauer & Oliver Grothe & Rainer Koch, 2020. "Modelling fuel injector spray characteristics in jet engines by using vine copulas," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(4), pages 863-886, August.
    10. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    11. Derumigny Alexis & Fermanian Jean-David, 2017. "About tests of the “simplifying” assumption for conditional copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 154-197, August.
    12. Jose Arreola Hernandez & Sang Hoon Kang & Ron P. McIver & Seong-Min Yoon, 2021. "Network Interdependence and Optimization of Bank Portfolios from Developed and Emerging Asia Pacific Countries," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 28(4), pages 613-647, December.
    13. Shahzad, Syed Jawad Hussain & Arreola-Hernandez, Jose & Bekiros, Stelios & Shahbaz, Muhammad & Kayani, Ghulam Mujtaba, 2018. "A systemic risk analysis of Islamic equity markets using vine copula and delta CoVaR modeling," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 104-127.
    14. Manner, Hans & Stark, Florian & Wied, Dominik, 2019. "Testing for structural breaks in factor copula models," Journal of Econometrics, Elsevier, vol. 208(2), pages 324-345.
    15. Hemei Li & Zhenya Liu & Shixuan Wang, 2022. "Vines climbing higher: Risk management for commodity futures markets using a regular vine copula approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 2438-2457, April.
    16. Jose Arreola Hernandez & Shawkat Hammoudeh & Duc Khuong Nguyen & Mazin A. M. Al Janabi & Juan Carlos Reboredo, 2017. "Global financial crisis and dependence risk analysis of sector portfolios: a vine copula approach," Applied Economics, Taylor & Francis Journals, vol. 49(25), pages 2409-2427, May.
    17. E. Allevi & L. Boffino & M. E. Giuli & G. Oggioni, 2019. "Analysis of long-term natural gas contracts with vine copulas in optimization portfolio problems," Annals of Operations Research, Springer, vol. 274(1), pages 1-37, March.
    18. Kreuzer, Alexander & Czado, Claudia, 2021. "Bayesian inference for a single factor copula stochastic volatility model using Hamiltonian Monte Carlo," Econometrics and Statistics, Elsevier, vol. 19(C), pages 130-150.
    19. Sarazin, Gabriel & Morio, Jérôme & Lagnoux, Agnès & Balesdent, Mathieu & Brevault, Loïc, 2021. "Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    20. Czado, Claudia, 2025. "Vine copula based structural equation models," Computational Statistics & Data Analysis, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:30:y:2025:i:2:d:10.1007_s13253-024-00658-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.